Arp2/3复合体和形成蛋白对肌动蛋白丝组装的调控。

Thomas D Pollard
{"title":"Arp2/3复合体和形成蛋白对肌动蛋白丝组装的调控。","authors":"Thomas D Pollard","doi":"10.1146/annurev.biophys.35.040405.101936","DOIUrl":null,"url":null,"abstract":"<p><p>This review summarizes what is known about the biochemical and biophysical mechanisms that initiate the assembly of actin filaments in cells. Assembly and disassembly of these filaments contribute to many types of cellular movements. Numerous proteins regulate actin assembly, but Arp2/3 complex and formins are the focus of this review because more is known about them than other proteins that stimulate the formation of new filaments. Arp2/3 complex is active at the leading edge of motile cells, where it produces branches on the sides of existing filaments. Growth of these filaments produces force to protrude the membrane. Crystal structures, reconstructions from electron micrographs, and biophysical experiments have started to map out the steps through which proteins called nucleation-promoting factors stimulate the formation of branches. Formins nucleate and support the elongation of unbranched actin filaments for cytokinesis and various types of actin filament bundles. Formins associate processively with the fast-growing ends of filaments and protect them from capping.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.101936","citationCount":"997","resultStr":"{\"title\":\"Regulation of actin filament assembly by Arp2/3 complex and formins.\",\"authors\":\"Thomas D Pollard\",\"doi\":\"10.1146/annurev.biophys.35.040405.101936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review summarizes what is known about the biochemical and biophysical mechanisms that initiate the assembly of actin filaments in cells. Assembly and disassembly of these filaments contribute to many types of cellular movements. Numerous proteins regulate actin assembly, but Arp2/3 complex and formins are the focus of this review because more is known about them than other proteins that stimulate the formation of new filaments. Arp2/3 complex is active at the leading edge of motile cells, where it produces branches on the sides of existing filaments. Growth of these filaments produces force to protrude the membrane. Crystal structures, reconstructions from electron micrographs, and biophysical experiments have started to map out the steps through which proteins called nucleation-promoting factors stimulate the formation of branches. Formins nucleate and support the elongation of unbranched actin filaments for cytokinesis and various types of actin filament bundles. Formins associate processively with the fast-growing ends of filaments and protect them from capping.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.101936\",\"citationCount\":\"997\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.35.040405.101936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.35.040405.101936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 997

摘要

本文综述了目前已知的肌动蛋白丝在细胞内组装的生化和生物物理机制。这些纤维的组装和拆卸促成了许多类型的细胞运动。许多蛋白质调节肌动蛋白的组装,但Arp2/3复合物和形成蛋白是本综述的重点,因为对它们的了解比其他蛋白质刺激新丝的形成更多。Arp2/3复合体活跃于运动细胞的前缘,在那里它在现有的细丝两侧产生分支。这些细丝的生长产生了突出膜的力量。晶体结构、电子显微照片重建和生物物理实验已经开始描绘出被称为促核因子的蛋白质刺激分支形成的步骤。在细胞分裂和各种类型的肌动蛋白丝束中,成形蛋白成核并支持未分枝的肌动蛋白丝的伸长。Formins与花丝快速生长的末端紧密相连,保护花丝不被封盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulation of actin filament assembly by Arp2/3 complex and formins.

This review summarizes what is known about the biochemical and biophysical mechanisms that initiate the assembly of actin filaments in cells. Assembly and disassembly of these filaments contribute to many types of cellular movements. Numerous proteins regulate actin assembly, but Arp2/3 complex and formins are the focus of this review because more is known about them than other proteins that stimulate the formation of new filaments. Arp2/3 complex is active at the leading edge of motile cells, where it produces branches on the sides of existing filaments. Growth of these filaments produces force to protrude the membrane. Crystal structures, reconstructions from electron micrographs, and biophysical experiments have started to map out the steps through which proteins called nucleation-promoting factors stimulate the formation of branches. Formins nucleate and support the elongation of unbranched actin filaments for cytokinesis and various types of actin filament bundles. Formins associate processively with the fast-growing ends of filaments and protect them from capping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions. Phase boundaries and biological membranes. Calculation of protein-ligand binding affinities. Synthetic gene circuits: design with directed evolution. Bilayer thickness and membrane protein function: an energetic perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1