间充质干细胞通过旁肽机制诱导内皮细胞活化。

Dennis Ladage, Klara Brixius, Caroline Steingen, Uwe Mehlhorn, Robert H G Schwinger, Wilhelm Bloch, Annette Schmidt
{"title":"间充质干细胞通过旁肽机制诱导内皮细胞活化。","authors":"Dennis Ladage,&nbsp;Klara Brixius,&nbsp;Caroline Steingen,&nbsp;Uwe Mehlhorn,&nbsp;Robert H G Schwinger,&nbsp;Wilhelm Bloch,&nbsp;Annette Schmidt","doi":"10.1080/10623320701343319","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are bone marrow-derived, pluripotent cells that possess the ability to transdifferentiate into various mesenchymal tissues such as bone, endothelium, and (heart) muscle. Therefore, these cells may provide a therapeutic tool, especially for the treatment of myocardial infarction. The interaction of the MSCs with the endothelial barrier and their ability to ultimately leave blood vessels after application are crucial in this context. In this study, the authors focused on the soluble factors produced by MSCs and their effect on the intracellular signal transduction of endothelial cells. The authors performed immunohistochemical measurements on human umbilical vein endothelial cells (HUVECs) treated with conditioned stem cell medium and took measurements of the intracellular nitric oxide (NO) levels and calcium changes. After application of conditioned stem cell medium, the authors detected an increase in endothelial NO synthase (eNOS) activity by translocation (Ca(2+)) and by phosphorylation (increase of pAKT and peNOS1177). Additionally, the authors observed an upregulation of pERK within the same time. The phosphorylated eNOS forms are linked to these findings and the increase of intracellular NO in the DAF measurements. Moreover, conditioned medium also increased intracellular calcium levels in endothelial cells. Concluding, the authors postulate that MSCs emit soluble factors that alter the NO and calcium levels of endothelial cells and may be important for facilitate crossing the endothelial barrier.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":"14 2","pages":"53-63"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320701343319","citationCount":"43","resultStr":"{\"title\":\"Mesenchymal stem cells induce endothelial activation via paracine mechanisms.\",\"authors\":\"Dennis Ladage,&nbsp;Klara Brixius,&nbsp;Caroline Steingen,&nbsp;Uwe Mehlhorn,&nbsp;Robert H G Schwinger,&nbsp;Wilhelm Bloch,&nbsp;Annette Schmidt\",\"doi\":\"10.1080/10623320701343319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) are bone marrow-derived, pluripotent cells that possess the ability to transdifferentiate into various mesenchymal tissues such as bone, endothelium, and (heart) muscle. Therefore, these cells may provide a therapeutic tool, especially for the treatment of myocardial infarction. The interaction of the MSCs with the endothelial barrier and their ability to ultimately leave blood vessels after application are crucial in this context. In this study, the authors focused on the soluble factors produced by MSCs and their effect on the intracellular signal transduction of endothelial cells. The authors performed immunohistochemical measurements on human umbilical vein endothelial cells (HUVECs) treated with conditioned stem cell medium and took measurements of the intracellular nitric oxide (NO) levels and calcium changes. After application of conditioned stem cell medium, the authors detected an increase in endothelial NO synthase (eNOS) activity by translocation (Ca(2+)) and by phosphorylation (increase of pAKT and peNOS1177). Additionally, the authors observed an upregulation of pERK within the same time. The phosphorylated eNOS forms are linked to these findings and the increase of intracellular NO in the DAF measurements. Moreover, conditioned medium also increased intracellular calcium levels in endothelial cells. Concluding, the authors postulate that MSCs emit soluble factors that alter the NO and calcium levels of endothelial cells and may be important for facilitate crossing the endothelial barrier.</p>\",\"PeriodicalId\":11587,\"journal\":{\"name\":\"Endothelium : journal of endothelial cell research\",\"volume\":\"14 2\",\"pages\":\"53-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10623320701343319\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endothelium : journal of endothelial cell research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10623320701343319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320701343319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

间充质干细胞(MSCs)是骨髓来源的多能细胞,具有转分化成各种间充质组织的能力,如骨、内皮和(心脏)肌肉。因此,这些细胞可能提供一种治疗工具,特别是对心肌梗死的治疗。在这种情况下,MSCs与内皮屏障的相互作用以及它们在应用后最终离开血管的能力是至关重要的。在本研究中,作者重点研究了间充质干细胞产生的可溶性因子及其对内皮细胞胞内信号转导的影响。作者对条件干细胞培养基处理的人脐静脉内皮细胞(HUVECs)进行免疫组化测量,并测量细胞内一氧化氮(NO)水平和钙的变化。应用条件干细胞培养基后,作者通过易位(Ca(2+))和磷酸化(pAKT和peNOS1177的增加)检测到内皮NO合成酶(eNOS)活性的增加。此外,作者在同一时间内观察到pERK的上调。磷酸化的eNOS形式与这些发现和DAF测量中细胞内NO的增加有关。此外,条件培养基也增加了内皮细胞的细胞内钙水平。最后,作者假设间充质干细胞释放可溶性因子,改变内皮细胞的NO和钙水平,可能对促进跨越内皮屏障很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesenchymal stem cells induce endothelial activation via paracine mechanisms.

Mesenchymal stem cells (MSCs) are bone marrow-derived, pluripotent cells that possess the ability to transdifferentiate into various mesenchymal tissues such as bone, endothelium, and (heart) muscle. Therefore, these cells may provide a therapeutic tool, especially for the treatment of myocardial infarction. The interaction of the MSCs with the endothelial barrier and their ability to ultimately leave blood vessels after application are crucial in this context. In this study, the authors focused on the soluble factors produced by MSCs and their effect on the intracellular signal transduction of endothelial cells. The authors performed immunohistochemical measurements on human umbilical vein endothelial cells (HUVECs) treated with conditioned stem cell medium and took measurements of the intracellular nitric oxide (NO) levels and calcium changes. After application of conditioned stem cell medium, the authors detected an increase in endothelial NO synthase (eNOS) activity by translocation (Ca(2+)) and by phosphorylation (increase of pAKT and peNOS1177). Additionally, the authors observed an upregulation of pERK within the same time. The phosphorylated eNOS forms are linked to these findings and the increase of intracellular NO in the DAF measurements. Moreover, conditioned medium also increased intracellular calcium levels in endothelial cells. Concluding, the authors postulate that MSCs emit soluble factors that alter the NO and calcium levels of endothelial cells and may be important for facilitate crossing the endothelial barrier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valproic acid on phosphometabolite levels. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel constructs as an enabling platform technology: II. The effect of anti-inflammatory drugs on phosphometabolite levels. Interaction of estrogen and tumor necrosis factor alpha in endothelial cell migration and early stage of angiogenesis. Endothelial progenitor cells in patients with severe peripheral arterial disease. Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1