Simon Kennedy, Steven G Burke, Anthony A Preston, Allan R McPhaden
{"title":"NO供体在猪冠状动脉球囊损伤后产生的一氧化氮增加。","authors":"Simon Kennedy, Steven G Burke, Anthony A Preston, Allan R McPhaden","doi":"10.1080/10623320701347039","DOIUrl":null,"url":null,"abstract":"<p><p>Vasospasm is a complication of cardiological procedures such as balloon angioplasty and may be related to vascular oxidant stress. Although nitric oxide donor drugs are often administered to prevent vasospasm, the response to these drugs in balloon-injured arteries has not been studied. Pig coronary arteries were balloon-injured in vitro and relaxations to nitric oxide (NO)-donating and NO-independent vasodilators studied. Generation of superoxide in response to injury was assayed using dihydroethidium. NO formation on addition of the NO donor drugs was studied using an amperometric sensor. Expression of nitrotyrosine, a peroxynitrite marker, was probed using immunocytochemistry. In vitro injury enhanced sensitivity to the NO donors SNAP and SpermineNONOate but blunted the response to isoprenaline or chromakalim. With both donors, NO formation was significantly enhanced in the presence of an injured vessel. Vascular superoxide generation was also increased throughout the vessel wall and a small increase in nitrotyrosine was detected in the injured vessel media following addition of SNAP. In conclusion, injured vessels were more sensitive to NO donors and this appears to be due to enhanced NO generation by the donor molecule. Increased formation of peroxynitrite within the injured vessel may contribute to the enhanced relaxation in injured vessels.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320701347039","citationCount":"1","resultStr":"{\"title\":\"Nitric oxide generation by NO donors is enhanced following balloon injury in the porcine coronary artery.\",\"authors\":\"Simon Kennedy, Steven G Burke, Anthony A Preston, Allan R McPhaden\",\"doi\":\"10.1080/10623320701347039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vasospasm is a complication of cardiological procedures such as balloon angioplasty and may be related to vascular oxidant stress. Although nitric oxide donor drugs are often administered to prevent vasospasm, the response to these drugs in balloon-injured arteries has not been studied. Pig coronary arteries were balloon-injured in vitro and relaxations to nitric oxide (NO)-donating and NO-independent vasodilators studied. Generation of superoxide in response to injury was assayed using dihydroethidium. NO formation on addition of the NO donor drugs was studied using an amperometric sensor. Expression of nitrotyrosine, a peroxynitrite marker, was probed using immunocytochemistry. In vitro injury enhanced sensitivity to the NO donors SNAP and SpermineNONOate but blunted the response to isoprenaline or chromakalim. With both donors, NO formation was significantly enhanced in the presence of an injured vessel. Vascular superoxide generation was also increased throughout the vessel wall and a small increase in nitrotyrosine was detected in the injured vessel media following addition of SNAP. In conclusion, injured vessels were more sensitive to NO donors and this appears to be due to enhanced NO generation by the donor molecule. Increased formation of peroxynitrite within the injured vessel may contribute to the enhanced relaxation in injured vessels.</p>\",\"PeriodicalId\":11587,\"journal\":{\"name\":\"Endothelium : journal of endothelial cell research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10623320701347039\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endothelium : journal of endothelial cell research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10623320701347039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320701347039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nitric oxide generation by NO donors is enhanced following balloon injury in the porcine coronary artery.
Vasospasm is a complication of cardiological procedures such as balloon angioplasty and may be related to vascular oxidant stress. Although nitric oxide donor drugs are often administered to prevent vasospasm, the response to these drugs in balloon-injured arteries has not been studied. Pig coronary arteries were balloon-injured in vitro and relaxations to nitric oxide (NO)-donating and NO-independent vasodilators studied. Generation of superoxide in response to injury was assayed using dihydroethidium. NO formation on addition of the NO donor drugs was studied using an amperometric sensor. Expression of nitrotyrosine, a peroxynitrite marker, was probed using immunocytochemistry. In vitro injury enhanced sensitivity to the NO donors SNAP and SpermineNONOate but blunted the response to isoprenaline or chromakalim. With both donors, NO formation was significantly enhanced in the presence of an injured vessel. Vascular superoxide generation was also increased throughout the vessel wall and a small increase in nitrotyrosine was detected in the injured vessel media following addition of SNAP. In conclusion, injured vessels were more sensitive to NO donors and this appears to be due to enhanced NO generation by the donor molecule. Increased formation of peroxynitrite within the injured vessel may contribute to the enhanced relaxation in injured vessels.