血液内皮细胞作为转基因表达肝细胞分泌蛋白的载体,通过睡美人。

Betsy T Kren, Wenxan Yin, Nigel S Key, Robert P Hebbel, Clifford J Steer
{"title":"血液内皮细胞作为转基因表达肝细胞分泌蛋白的载体,通过睡美人。","authors":"Betsy T Kren,&nbsp;Wenxan Yin,&nbsp;Nigel S Key,&nbsp;Robert P Hebbel,&nbsp;Clifford J Steer","doi":"10.1080/10623320701346932","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic use of autologous cells with the capacity for extensive in vitro expansion and manipulation prior to host administration has been an area of significant investigation over the last decade. Blood outgrowth endothelial cells (BOECs) are derived from the circulation and exhibit proliferative growth, in vivo engraftment, and survival characteristics for long-term expression of endogenously secreted proteins, such as factor VIII (FVIII). The authors describe a modified method for the isolation, culture, and expansion of these cells that is readily accomplished using standard laboratory methods. Using a commercially available transfection reagent, approximately 30% of these primary cells can be routinely transfected with the nonviral Sleeping Beauty transposon for long-term, stable transgene expression. Moreover, the results indicate that these cells have the ability to secrete functionally active proteins that are synthesized endogenously by hepatocytes and require post-translational modification including alpha1-antitrypsin and clotting factors VII and IX. This, coupled with their notably long half-life of years, suggests that these cells may provide an appropriate vehicle for secretion of a variety of proteins produced by different cell types in vivo. Thus, BOECs have the potential to provide clinically relevant secreted proteins for diseases other than those of endothelial origin.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320701346932","citationCount":"8","resultStr":"{\"title\":\"Blood outgrowth endothelial cells as a vehicle for transgene expression of hepatocyte-secreted proteins via Sleeping Beauty.\",\"authors\":\"Betsy T Kren,&nbsp;Wenxan Yin,&nbsp;Nigel S Key,&nbsp;Robert P Hebbel,&nbsp;Clifford J Steer\",\"doi\":\"10.1080/10623320701346932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The therapeutic use of autologous cells with the capacity for extensive in vitro expansion and manipulation prior to host administration has been an area of significant investigation over the last decade. Blood outgrowth endothelial cells (BOECs) are derived from the circulation and exhibit proliferative growth, in vivo engraftment, and survival characteristics for long-term expression of endogenously secreted proteins, such as factor VIII (FVIII). The authors describe a modified method for the isolation, culture, and expansion of these cells that is readily accomplished using standard laboratory methods. Using a commercially available transfection reagent, approximately 30% of these primary cells can be routinely transfected with the nonviral Sleeping Beauty transposon for long-term, stable transgene expression. Moreover, the results indicate that these cells have the ability to secrete functionally active proteins that are synthesized endogenously by hepatocytes and require post-translational modification including alpha1-antitrypsin and clotting factors VII and IX. This, coupled with their notably long half-life of years, suggests that these cells may provide an appropriate vehicle for secretion of a variety of proteins produced by different cell types in vivo. Thus, BOECs have the potential to provide clinically relevant secreted proteins for diseases other than those of endothelial origin.</p>\",\"PeriodicalId\":11587,\"journal\":{\"name\":\"Endothelium : journal of endothelial cell research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10623320701346932\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endothelium : journal of endothelial cell research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10623320701346932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320701346932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在过去十年中,在宿主给药之前,具有广泛体外扩增和操作能力的自体细胞的治疗用途一直是一个重要的研究领域。血液外生内皮细胞(BOECs)来源于血液循环,表现出增殖生长、体内植入和长期表达内源性分泌蛋白(如因子VIII (FVIII))的生存特征。作者描述了一种改进的方法,用于分离,培养和扩增这些细胞,很容易完成使用标准的实验室方法。使用市售的转染试剂,大约30%的这些原代细胞可以常规转染非病毒性睡美人转座子,以实现长期稳定的转基因表达。此外,研究结果表明,这些细胞有能力分泌由肝细胞内源性合成的功能性活性蛋白,这些蛋白需要翻译后修饰,包括α - 1抗胰蛋白酶和凝血因子VII和IX。这一点,再加上它们显著长的半衰期,表明这些细胞可能为体内不同细胞类型产生的各种蛋白质的分泌提供了合适的载体。因此,BOECs有潜力为非内皮源性疾病提供临床相关的分泌蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blood outgrowth endothelial cells as a vehicle for transgene expression of hepatocyte-secreted proteins via Sleeping Beauty.

The therapeutic use of autologous cells with the capacity for extensive in vitro expansion and manipulation prior to host administration has been an area of significant investigation over the last decade. Blood outgrowth endothelial cells (BOECs) are derived from the circulation and exhibit proliferative growth, in vivo engraftment, and survival characteristics for long-term expression of endogenously secreted proteins, such as factor VIII (FVIII). The authors describe a modified method for the isolation, culture, and expansion of these cells that is readily accomplished using standard laboratory methods. Using a commercially available transfection reagent, approximately 30% of these primary cells can be routinely transfected with the nonviral Sleeping Beauty transposon for long-term, stable transgene expression. Moreover, the results indicate that these cells have the ability to secrete functionally active proteins that are synthesized endogenously by hepatocytes and require post-translational modification including alpha1-antitrypsin and clotting factors VII and IX. This, coupled with their notably long half-life of years, suggests that these cells may provide an appropriate vehicle for secretion of a variety of proteins produced by different cell types in vivo. Thus, BOECs have the potential to provide clinically relevant secreted proteins for diseases other than those of endothelial origin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valproic acid on phosphometabolite levels. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel constructs as an enabling platform technology: II. The effect of anti-inflammatory drugs on phosphometabolite levels. Interaction of estrogen and tumor necrosis factor alpha in endothelial cell migration and early stage of angiogenesis. Endothelial progenitor cells in patients with severe peripheral arterial disease. Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1