硅酸铝和硅酸铝基聚合物复合材料:现状、应用和未来趋势

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Progress in Surface Science Pub Date : 2014-08-01 DOI:10.1016/j.progsurf.2014.08.002
A.C. Lopes , P. Martins , S. Lanceros-Mendez
{"title":"硅酸铝和硅酸铝基聚合物复合材料:现状、应用和未来趋势","authors":"A.C. Lopes ,&nbsp;P. Martins ,&nbsp;S. Lanceros-Mendez","doi":"10.1016/j.progsurf.2014.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminosilicates<span> have traditionally been important materials for applications related to adsorbents, water softeners<span>, catalysis and mechanical and thermal reinforcement due to their high surface area, excellent thermal/hydrothermal stability, high shape-selectivity and superior ion-exchange ability. Recently, their use as polymer fillers has allowed to increasingly extending their application range to innovative areas such as medical and biological fields as well as in sensors, filtration membranes, energy storage and novel catalysis routes. Further, the large versatility and tailoring possibilities of both filler and matrix indicates this area as one of the enabling key technologies of the near future.</span></span></p><p>This work summarizes the main developments up to date in this increasingly interesting field, focuses on the main applications already developed as well as on the key challenges for the near future.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"89 3","pages":"Pages 239-277"},"PeriodicalIF":8.7000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.08.002","citationCount":"80","resultStr":"{\"title\":\"Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends\",\"authors\":\"A.C. Lopes ,&nbsp;P. Martins ,&nbsp;S. Lanceros-Mendez\",\"doi\":\"10.1016/j.progsurf.2014.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminosilicates<span> have traditionally been important materials for applications related to adsorbents, water softeners<span>, catalysis and mechanical and thermal reinforcement due to their high surface area, excellent thermal/hydrothermal stability, high shape-selectivity and superior ion-exchange ability. Recently, their use as polymer fillers has allowed to increasingly extending their application range to innovative areas such as medical and biological fields as well as in sensors, filtration membranes, energy storage and novel catalysis routes. Further, the large versatility and tailoring possibilities of both filler and matrix indicates this area as one of the enabling key technologies of the near future.</span></span></p><p>This work summarizes the main developments up to date in this increasingly interesting field, focuses on the main applications already developed as well as on the key challenges for the near future.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"89 3\",\"pages\":\"Pages 239-277\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2014.08.002\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681614000203\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681614000203","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 80

摘要

硅铝酸盐由于其高表面积、优异的热/水热稳定性、高形状选择性和优异的离子交换能力,传统上一直是吸附剂、软水剂、催化和机械和热增强等应用的重要材料。最近,它们作为聚合物填料的使用使其应用范围日益扩展到创新领域,如医疗和生物领域,以及传感器,过滤膜,能量存储和新的催化途径。此外,填料和基体的广泛通用性和裁剪可能性表明,该领域是不久的将来的关键技术之一。这项工作总结了这个日益有趣的领域的主要发展,重点是已经开发的主要应用以及不久的将来的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends

Aluminosilicates have traditionally been important materials for applications related to adsorbents, water softeners, catalysis and mechanical and thermal reinforcement due to their high surface area, excellent thermal/hydrothermal stability, high shape-selectivity and superior ion-exchange ability. Recently, their use as polymer fillers has allowed to increasingly extending their application range to innovative areas such as medical and biological fields as well as in sensors, filtration membranes, energy storage and novel catalysis routes. Further, the large versatility and tailoring possibilities of both filler and matrix indicates this area as one of the enabling key technologies of the near future.

This work summarizes the main developments up to date in this increasingly interesting field, focuses on the main applications already developed as well as on the key challenges for the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
期刊最新文献
Editorial Board Current perspective towards a general framework to describe and harness friction at the nanoscale Time-resolved photoemission electron microscopy of semiconductor interfaces Editorial Board Structural dynamics in atomic indium wires on silicon: From ultrafast probing to coherent vibrational control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1