{"title":"热缔合基质与液体聚合物的比较。","authors":"Nidhal Kahlaoui, Valessa Barbier, Marie-Alix Duval, Françoise Lefebvre, Jan Sudor, Rainer Siebert","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Capillary electrophoresis is still widely used for DNA sequencing. The quality of the replaceable sieving matrix is a key area for massive sequencing with regard to speed and efficiency. The T25 polymer has been tested extensively and compared to poly(N,N-dimethylacrylamide) (PDMA). In terms of peak resolution, both polymers perform similarly. On the other hand, the run time is much shorter with the T25 polymer.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of a thermo-associating matrix and a liquid polymer.\",\"authors\":\"Nidhal Kahlaoui, Valessa Barbier, Marie-Alix Duval, Françoise Lefebvre, Jan Sudor, Rainer Siebert\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capillary electrophoresis is still widely used for DNA sequencing. The quality of the replaceable sieving matrix is a key area for massive sequencing with regard to speed and efficiency. The T25 polymer has been tested extensively and compared to poly(N,N-dimethylacrylamide) (PDMA). In terms of peak resolution, both polymers perform similarly. On the other hand, the run time is much shorter with the T25 polymer.</p>\",\"PeriodicalId\":15060,\"journal\":{\"name\":\"Journal of capillary electrophoresis and microchip technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of capillary electrophoresis and microchip technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of a thermo-associating matrix and a liquid polymer.
Capillary electrophoresis is still widely used for DNA sequencing. The quality of the replaceable sieving matrix is a key area for massive sequencing with regard to speed and efficiency. The T25 polymer has been tested extensively and compared to poly(N,N-dimethylacrylamide) (PDMA). In terms of peak resolution, both polymers perform similarly. On the other hand, the run time is much shorter with the T25 polymer.