{"title":"高能涡旋态碰撞的前景与挑战","authors":"Igor P. Ivanov","doi":"10.1016/j.ppnp.2022.103987","DOIUrl":null,"url":null,"abstract":"<div><p><span>Vortex states of photons, electrons, and other particles are non-plane-wave solutions of the corresponding wave equation with helicoidal </span>wave fronts<span>. These states possess an intrinsic orbital angular momentum<span> with respect to the average propagation direction, which represents a new degree of freedom, previously unexplored in particle or nuclear collisions. Vortex states of photons, electrons, neutrons, and neutral atoms have been experimentally produced, albeit at low energies, and are being intensively explored. Anticipating future experimental progress, one can ask what additional insights on nuclei and particles one can gain once collisions of high-energy vortex states become possible. This review describes the present-day landscape of physics opportunities, experimental progress and suggestions relevant to vortex states in high energy collisions. The aim is to familiarize the community with this emergent cross-disciplinary topic and to provide a sufficiently complete literature coverage, highlighting some results and calculational techniques.</span></span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"127 ","pages":"Article 103987"},"PeriodicalIF":14.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Promises and challenges of high-energy vortex states collisions\",\"authors\":\"Igor P. Ivanov\",\"doi\":\"10.1016/j.ppnp.2022.103987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Vortex states of photons, electrons, and other particles are non-plane-wave solutions of the corresponding wave equation with helicoidal </span>wave fronts<span>. These states possess an intrinsic orbital angular momentum<span> with respect to the average propagation direction, which represents a new degree of freedom, previously unexplored in particle or nuclear collisions. Vortex states of photons, electrons, neutrons, and neutral atoms have been experimentally produced, albeit at low energies, and are being intensively explored. Anticipating future experimental progress, one can ask what additional insights on nuclei and particles one can gain once collisions of high-energy vortex states become possible. This review describes the present-day landscape of physics opportunities, experimental progress and suggestions relevant to vortex states in high energy collisions. The aim is to familiarize the community with this emergent cross-disciplinary topic and to provide a sufficiently complete literature coverage, highlighting some results and calculational techniques.</span></span></p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"127 \",\"pages\":\"Article 103987\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641022000461\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641022000461","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Promises and challenges of high-energy vortex states collisions
Vortex states of photons, electrons, and other particles are non-plane-wave solutions of the corresponding wave equation with helicoidal wave fronts. These states possess an intrinsic orbital angular momentum with respect to the average propagation direction, which represents a new degree of freedom, previously unexplored in particle or nuclear collisions. Vortex states of photons, electrons, neutrons, and neutral atoms have been experimentally produced, albeit at low energies, and are being intensively explored. Anticipating future experimental progress, one can ask what additional insights on nuclei and particles one can gain once collisions of high-energy vortex states become possible. This review describes the present-day landscape of physics opportunities, experimental progress and suggestions relevant to vortex states in high energy collisions. The aim is to familiarize the community with this emergent cross-disciplinary topic and to provide a sufficiently complete literature coverage, highlighting some results and calculational techniques.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.