Katharina L Lohmann, Michel L Vandenplas, Michelle H Barton, Clare E Bryant, James N Moore
{"title":"马的TLR4/MD-2复合物作为激动剂介导对球形红杆菌脂多糖的识别。","authors":"Katharina L Lohmann, Michel L Vandenplas, Michelle H Barton, Clare E Bryant, James N Moore","doi":"10.1177/0968051907083193","DOIUrl":null,"url":null,"abstract":"<p><p>Lipopolysaccharide (LPS) antagonists inhibit the response of inflammatory cells to LPS, presumably by competitive inhibition, and may be of therapeutic value in the treatment of endotoxemia and sepsis. The inhibitory effects of some LPS antagonists are restricted to certain host species, however, as the same molecules can have significant endotoxic activity in other species. This species-specific recognition appears to be mediated by Toll-like receptor 4 (TLR4) and/or MD-2. We have shown previously that LPS from Rhodobacter sphaeroides ( RsLPS) is an LPS antagonist in human cells but an agonist (or LPS mimetic) in equine cells. In the present study, HEK293 cells were transfected with combinations of human and equine CD14, TLR4 and MD-2, and incubated with either RsLPS or with LPS from Escherichia coli as an endotoxin control. NF-kappaB activation was measured in a dual luciferase assay as an indicator of cellular activation. Our results indicate that E. colic LPS activated NF-kappaB in cells transfected with all combinations of the three receptor proteins, whereas RsLPS activated NF-kappaB only in cells expressing the single combination of equine TLR4 and equine MD-2. We conclude that the TLR4/MD-2 complex is responsible for recognition of RsLPS as an agonist in equine cells.</p>","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"13 4","pages":"235-42"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0968051907083193","citationCount":"49","resultStr":"{\"title\":\"The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist.\",\"authors\":\"Katharina L Lohmann, Michel L Vandenplas, Michelle H Barton, Clare E Bryant, James N Moore\",\"doi\":\"10.1177/0968051907083193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipopolysaccharide (LPS) antagonists inhibit the response of inflammatory cells to LPS, presumably by competitive inhibition, and may be of therapeutic value in the treatment of endotoxemia and sepsis. The inhibitory effects of some LPS antagonists are restricted to certain host species, however, as the same molecules can have significant endotoxic activity in other species. This species-specific recognition appears to be mediated by Toll-like receptor 4 (TLR4) and/or MD-2. We have shown previously that LPS from Rhodobacter sphaeroides ( RsLPS) is an LPS antagonist in human cells but an agonist (or LPS mimetic) in equine cells. In the present study, HEK293 cells were transfected with combinations of human and equine CD14, TLR4 and MD-2, and incubated with either RsLPS or with LPS from Escherichia coli as an endotoxin control. NF-kappaB activation was measured in a dual luciferase assay as an indicator of cellular activation. Our results indicate that E. colic LPS activated NF-kappaB in cells transfected with all combinations of the three receptor proteins, whereas RsLPS activated NF-kappaB only in cells expressing the single combination of equine TLR4 and equine MD-2. We conclude that the TLR4/MD-2 complex is responsible for recognition of RsLPS as an agonist in equine cells.</p>\",\"PeriodicalId\":80292,\"journal\":{\"name\":\"Journal of endotoxin research\",\"volume\":\"13 4\",\"pages\":\"235-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0968051907083193\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of endotoxin research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0968051907083193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endotoxin research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0968051907083193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist.
Lipopolysaccharide (LPS) antagonists inhibit the response of inflammatory cells to LPS, presumably by competitive inhibition, and may be of therapeutic value in the treatment of endotoxemia and sepsis. The inhibitory effects of some LPS antagonists are restricted to certain host species, however, as the same molecules can have significant endotoxic activity in other species. This species-specific recognition appears to be mediated by Toll-like receptor 4 (TLR4) and/or MD-2. We have shown previously that LPS from Rhodobacter sphaeroides ( RsLPS) is an LPS antagonist in human cells but an agonist (or LPS mimetic) in equine cells. In the present study, HEK293 cells were transfected with combinations of human and equine CD14, TLR4 and MD-2, and incubated with either RsLPS or with LPS from Escherichia coli as an endotoxin control. NF-kappaB activation was measured in a dual luciferase assay as an indicator of cellular activation. Our results indicate that E. colic LPS activated NF-kappaB in cells transfected with all combinations of the three receptor proteins, whereas RsLPS activated NF-kappaB only in cells expressing the single combination of equine TLR4 and equine MD-2. We conclude that the TLR4/MD-2 complex is responsible for recognition of RsLPS as an agonist in equine cells.