使用电压梯度部分填充亲和毛细管电泳估计配体与受体的结合常数。

Alejandra Ramirez, Frank A Gomez
{"title":"使用电压梯度部分填充亲和毛细管电泳估计配体与受体的结合常数。","authors":"Alejandra Ramirez,&nbsp;Frank A Gomez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage gradient partial-filling affinity capillary electrophoresis (VGPFACE) is used to determine binding constants between carbonic anhydrase B (CAB, E.C.4.2.1.1) and arylsulfonamides, and vancomycin (Van) from Streptomyces orientalis and teicoplanin (Teic) from Actinoplanes teicomyceticus and D-Ala-D-Ala terminus peptides. Two variations of VGPFACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations followed by a sample containing receptor and two noninteracting standards and electrophoresed in buffer using a voltage gradient that increases from 0 to 25 kV over the duration of the experiment. Upon continued electrophoresis, zones of solution overlap, and equilibrium is established between the ligand and receptor, causing a shift in the migration time of the receptor with respect to the noninteracting standards. This change in migration time is utilized for estimating a binding constant (K(b)). In the second technique, voltage gradient partial-filling multiple-injection ACE (VGPFMIACE), a multiple-injection sequence is used whereby the capillary is partially filled with ligand at increasing concentrations, a noninteracting standard, three or four separate plugs of receptor each separated by small plugs of buffer, and a plug containing a second noninteracting standard; this is then electrophoresed in buffer with a similar voltage gradient. Upon continued electrophoresis, a similar equilibrium is established and a value for K(b) is obtained for the interaction. The VGPFACE technique expands the functionality and potential of ACE as an analytical tool to examine various receptor-ligand interactions.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"43-50"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of voltage gradient partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors.\",\"authors\":\"Alejandra Ramirez,&nbsp;Frank A Gomez\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Voltage gradient partial-filling affinity capillary electrophoresis (VGPFACE) is used to determine binding constants between carbonic anhydrase B (CAB, E.C.4.2.1.1) and arylsulfonamides, and vancomycin (Van) from Streptomyces orientalis and teicoplanin (Teic) from Actinoplanes teicomyceticus and D-Ala-D-Ala terminus peptides. Two variations of VGPFACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations followed by a sample containing receptor and two noninteracting standards and electrophoresed in buffer using a voltage gradient that increases from 0 to 25 kV over the duration of the experiment. Upon continued electrophoresis, zones of solution overlap, and equilibrium is established between the ligand and receptor, causing a shift in the migration time of the receptor with respect to the noninteracting standards. This change in migration time is utilized for estimating a binding constant (K(b)). In the second technique, voltage gradient partial-filling multiple-injection ACE (VGPFMIACE), a multiple-injection sequence is used whereby the capillary is partially filled with ligand at increasing concentrations, a noninteracting standard, three or four separate plugs of receptor each separated by small plugs of buffer, and a plug containing a second noninteracting standard; this is then electrophoresed in buffer with a similar voltage gradient. Upon continued electrophoresis, a similar equilibrium is established and a value for K(b) is obtained for the interaction. The VGPFACE technique expands the functionality and potential of ACE as an analytical tool to examine various receptor-ligand interactions.</p>\",\"PeriodicalId\":15060,\"journal\":{\"name\":\"Journal of capillary electrophoresis and microchip technology\",\"volume\":\"10 3-4\",\"pages\":\"43-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of capillary electrophoresis and microchip technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用电压梯度部分填充亲和毛细管电泳(VGPFACE)测定了碳酸酸酶B (CAB, E.C.4.2.1.1)与芳基磺酰胺、东方链霉菌中的万古霉素(Van)和teicoplanin (Teic)与D-Ala-D-Ala端肽的结合常数。本文描述了VGPFACE的两种变体。在第一种技术中,毛细管部分充满浓度不断增加的配体,随后是含有受体和两个非相互作用标准的样品,并在缓冲液中电泳,在实验期间使用从0到25千伏的电压梯度。在继续电泳后,溶液区域重叠,并且在配体和受体之间建立平衡,导致受体相对于非相互作用标准的迁移时间发生变化。这种迁移时间的变化被用来估计一个结合常数(K(b))。在第二种技术中,电压梯度部分填充多次注射ACE (VGPFMIACE),使用多次注射序列,其中毛细管部分填充浓度增加的配体,非相互作用标准物,三个或四个单独的受体塞,每个塞由小缓冲塞分开,一个塞包含第二个非相互作用标准物;然后在具有相似电压梯度的缓冲液中电泳。在继续电泳后,建立了类似的平衡,并获得了相互作用的K(b)值。VGPFACE技术扩展了ACE作为检测各种受体-配体相互作用的分析工具的功能和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of voltage gradient partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors.

Voltage gradient partial-filling affinity capillary electrophoresis (VGPFACE) is used to determine binding constants between carbonic anhydrase B (CAB, E.C.4.2.1.1) and arylsulfonamides, and vancomycin (Van) from Streptomyces orientalis and teicoplanin (Teic) from Actinoplanes teicomyceticus and D-Ala-D-Ala terminus peptides. Two variations of VGPFACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations followed by a sample containing receptor and two noninteracting standards and electrophoresed in buffer using a voltage gradient that increases from 0 to 25 kV over the duration of the experiment. Upon continued electrophoresis, zones of solution overlap, and equilibrium is established between the ligand and receptor, causing a shift in the migration time of the receptor with respect to the noninteracting standards. This change in migration time is utilized for estimating a binding constant (K(b)). In the second technique, voltage gradient partial-filling multiple-injection ACE (VGPFMIACE), a multiple-injection sequence is used whereby the capillary is partially filled with ligand at increasing concentrations, a noninteracting standard, three or four separate plugs of receptor each separated by small plugs of buffer, and a plug containing a second noninteracting standard; this is then electrophoresed in buffer with a similar voltage gradient. Upon continued electrophoresis, a similar equilibrium is established and a value for K(b) is obtained for the interaction. The VGPFACE technique expands the functionality and potential of ACE as an analytical tool to examine various receptor-ligand interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device. Analysis of sphingosine 1-phosphate by capillary electrophoresis coupled to laser-induced fluorescence detection: use of a transparent fused-silica capillary. Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature. Comparison of a thermo-associating matrix and a liquid polymer. Marja-Liisa Riekkola.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1