{"title":"毛细管电泳用鞘流电化学检测器。","authors":"Junji Inoue, Takashi Kaneta, Totaro Imasaka","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel electrochemical detection system for capillary electrophoresis was proposed. In the proposed system, sheath flow would transport analytes to the working electrode surface to allow electrochemical detection. The sheath-flow electrochemical detector would require no modification of capillaries and could accommodate capillaries larger than 25 microm i.d.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"69-73"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sheath-flow electrochemical detector for capillary electrophoresis.\",\"authors\":\"Junji Inoue, Takashi Kaneta, Totaro Imasaka\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a novel electrochemical detection system for capillary electrophoresis was proposed. In the proposed system, sheath flow would transport analytes to the working electrode surface to allow electrochemical detection. The sheath-flow electrochemical detector would require no modification of capillaries and could accommodate capillaries larger than 25 microm i.d.</p>\",\"PeriodicalId\":15060,\"journal\":{\"name\":\"Journal of capillary electrophoresis and microchip technology\",\"volume\":\"10 3-4\",\"pages\":\"69-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of capillary electrophoresis and microchip technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sheath-flow electrochemical detector for capillary electrophoresis.
In this study, a novel electrochemical detection system for capillary electrophoresis was proposed. In the proposed system, sheath flow would transport analytes to the working electrode surface to allow electrochemical detection. The sheath-flow electrochemical detector would require no modification of capillaries and could accommodate capillaries larger than 25 microm i.d.