Bahar Sogutmaz Ozdemir, Pilar Hernandez, Ertugrul Filiz, Hikmet Budak
{"title":"Brachypodium基因组学。","authors":"Bahar Sogutmaz Ozdemir, Pilar Hernandez, Ertugrul Filiz, Hikmet Budak","doi":"10.1155/2008/536104","DOIUrl":null,"url":null,"abstract":"<p><p>Brachypodium distachyon (L.) Beauv. is a temperate wild grass species; its morphological and genomic characteristics make it a model system when compared to many other grass species. It has a small genome, short growth cycle, self-fertility, many diploid accessions, and simple growth requirements. In addition, it is phylogenetically close to economically important crops, like wheat and barley, and several potential biofuel grasses. It exhibits agricultural traits similar to those of these target crops. For cereal genomes, it is a better model than Arabidopsis thaliana and Oryza sativa (rice), the former used as a model for all flowering plants and the latter hitherto used as model for genomes of all temperate grass species including major cereals like barley and wheat. Increasing interest in this species has resulted in the development of a series of genomics resources, including nuclear sequences and BAC/EST libraries, together with the collection and characterization of other genetic resources. It is expected that the use of this model will allow rapid advances in generation of genomics information for the improvement of all temperate crops, particularly the cereals.</p>","PeriodicalId":73471,"journal":{"name":"International journal of plant genomics","volume":" ","pages":"536104"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/536104","citationCount":"25","resultStr":"{\"title\":\"Brachypodium genomics.\",\"authors\":\"Bahar Sogutmaz Ozdemir, Pilar Hernandez, Ertugrul Filiz, Hikmet Budak\",\"doi\":\"10.1155/2008/536104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brachypodium distachyon (L.) Beauv. is a temperate wild grass species; its morphological and genomic characteristics make it a model system when compared to many other grass species. It has a small genome, short growth cycle, self-fertility, many diploid accessions, and simple growth requirements. In addition, it is phylogenetically close to economically important crops, like wheat and barley, and several potential biofuel grasses. It exhibits agricultural traits similar to those of these target crops. For cereal genomes, it is a better model than Arabidopsis thaliana and Oryza sativa (rice), the former used as a model for all flowering plants and the latter hitherto used as model for genomes of all temperate grass species including major cereals like barley and wheat. Increasing interest in this species has resulted in the development of a series of genomics resources, including nuclear sequences and BAC/EST libraries, together with the collection and characterization of other genetic resources. It is expected that the use of this model will allow rapid advances in generation of genomics information for the improvement of all temperate crops, particularly the cereals.</p>\",\"PeriodicalId\":73471,\"journal\":{\"name\":\"International journal of plant genomics\",\"volume\":\" \",\"pages\":\"536104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2008/536104\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of plant genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/536104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of plant genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/536104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brachypodium distachyon (L.) Beauv. is a temperate wild grass species; its morphological and genomic characteristics make it a model system when compared to many other grass species. It has a small genome, short growth cycle, self-fertility, many diploid accessions, and simple growth requirements. In addition, it is phylogenetically close to economically important crops, like wheat and barley, and several potential biofuel grasses. It exhibits agricultural traits similar to those of these target crops. For cereal genomes, it is a better model than Arabidopsis thaliana and Oryza sativa (rice), the former used as a model for all flowering plants and the latter hitherto used as model for genomes of all temperate grass species including major cereals like barley and wheat. Increasing interest in this species has resulted in the development of a series of genomics resources, including nuclear sequences and BAC/EST libraries, together with the collection and characterization of other genetic resources. It is expected that the use of this model will allow rapid advances in generation of genomics information for the improvement of all temperate crops, particularly the cereals.