时序微阵列数据的贝叶斯函数数据聚类。

Ping Ma, Wenxuan Zhong, Yang Feng, Jun S Liu
{"title":"时序微阵列数据的贝叶斯函数数据聚类。","authors":"Ping Ma,&nbsp;Wenxuan Zhong,&nbsp;Yang Feng,&nbsp;Jun S Liu","doi":"10.1155/2008/231897","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the cluster number automatically based on the Bayesian information criterion, and handle missing data easily. When applied to a microarray dataset on the budding yeast, our clustering algorithm provides biologically meaningful gene clusters according to a functional enrichment analysis.</p>","PeriodicalId":73471,"journal":{"name":"International journal of plant genomics","volume":" ","pages":"231897"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/231897","citationCount":"9","resultStr":"{\"title\":\"Bayesian functional data clustering for temporal microarray data.\",\"authors\":\"Ping Ma,&nbsp;Wenxuan Zhong,&nbsp;Yang Feng,&nbsp;Jun S Liu\",\"doi\":\"10.1155/2008/231897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the cluster number automatically based on the Bayesian information criterion, and handle missing data easily. When applied to a microarray dataset on the budding yeast, our clustering algorithm provides biologically meaningful gene clusters according to a functional enrichment analysis.</p>\",\"PeriodicalId\":73471,\"journal\":{\"name\":\"International journal of plant genomics\",\"volume\":\" \",\"pages\":\"231897\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2008/231897\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of plant genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/231897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of plant genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/231897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种基于混合效应平滑样条模型的贝叶斯聚类方法来聚类时间基因表达微阵列谱,并设计了一个吉布斯采样器来从期望的后验分布中采样。该方法可以根据贝叶斯信息准则自动确定聚类数,并且易于处理缺失数据。当应用于芽殖酵母的微阵列数据集时,我们的聚类算法根据功能富集分析提供具有生物学意义的基因簇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian functional data clustering for temporal microarray data.

We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the cluster number automatically based on the Bayesian information criterion, and handle missing data easily. When applied to a microarray dataset on the budding yeast, our clustering algorithm provides biologically meaningful gene clusters according to a functional enrichment analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen. Molecular Identification and Karyological Analysis of a Rampant Aspen Populus tremula L. (Salicaceae) Clone. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean. Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of Glycine max Application of Microsatellite Loci for Molecular Identification of Elite Genotypes, Analysis of Clonality, and Genetic Diversity in Aspen Populus tremula L. (Salicaceae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1