旨在保存或恢复1型糖尿病患者β细胞功能的治疗方法。

B Keymeulen
{"title":"旨在保存或恢复1型糖尿病患者β细胞功能的治疗方法。","authors":"B Keymeulen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes is caused by an immune mediated destruction of the insulin-secreting beta cells in the pancreas. The disease can become clinically apparent at any age. At clinical diagnosis, there is invariably some residual beta cell function. Recent studies--including one mainly conducted in Belgium--have provided proof of principle that short-term humanized anti-T-cell antibody treatment is able to preserve residual beta cell function for at least 18 months in adult type 1 diabetic patients with a recent clinical onset of disease. The effect of anti-T-cell antibody treatment is more pronounced among patients with initial higher residual beta-cell function. The resultant stabilizing effect on metabolic control is expected to delay chronic complications and avoid hypoglycemia in these patients. With a similar goal in mind, non-uremic C-peptide negative type 1 diabetic patients are offered beta cell transplantation. During the last years the one year survival of these grafts under immune suppression with Anti-Thymocyte-Globulin, tacrolimus and mycophenolate mofetil exceeds 80% with virtually no cases of primary non-function. Widespread application will however only occur if ways are found to induce operational graft tolerance and the shortage of viable human donor cells can be overcome. Both islet xenotransplantation and stem cell therapy provide possible strategies to solve this problem and represent areas of intense investigation. The ultimate goal is prevention of clinical disease. Studies by the Belgian Diabetes Registry and others in first degree family members of type 1 diabetic patients have refined identification of individuals at very high risk of hyperglycemia so that new immunological treatments can be tested in the prediabetic phase.</p>","PeriodicalId":76790,"journal":{"name":"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie","volume":"70 2","pages":"85-103"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapies aimed at preservation or restoration of beta cell function in type 1 diabetes.\",\"authors\":\"B Keymeulen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 1 diabetes is caused by an immune mediated destruction of the insulin-secreting beta cells in the pancreas. The disease can become clinically apparent at any age. At clinical diagnosis, there is invariably some residual beta cell function. Recent studies--including one mainly conducted in Belgium--have provided proof of principle that short-term humanized anti-T-cell antibody treatment is able to preserve residual beta cell function for at least 18 months in adult type 1 diabetic patients with a recent clinical onset of disease. The effect of anti-T-cell antibody treatment is more pronounced among patients with initial higher residual beta-cell function. The resultant stabilizing effect on metabolic control is expected to delay chronic complications and avoid hypoglycemia in these patients. With a similar goal in mind, non-uremic C-peptide negative type 1 diabetic patients are offered beta cell transplantation. During the last years the one year survival of these grafts under immune suppression with Anti-Thymocyte-Globulin, tacrolimus and mycophenolate mofetil exceeds 80% with virtually no cases of primary non-function. Widespread application will however only occur if ways are found to induce operational graft tolerance and the shortage of viable human donor cells can be overcome. Both islet xenotransplantation and stem cell therapy provide possible strategies to solve this problem and represent areas of intense investigation. The ultimate goal is prevention of clinical disease. Studies by the Belgian Diabetes Registry and others in first degree family members of type 1 diabetic patients have refined identification of individuals at very high risk of hyperglycemia so that new immunological treatments can be tested in the prediabetic phase.</p>\",\"PeriodicalId\":76790,\"journal\":{\"name\":\"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie\",\"volume\":\"70 2\",\"pages\":\"85-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1型糖尿病是由免疫介导的胰腺分泌胰岛素的β细胞的破坏引起的。这种疾病可以在任何年龄表现出来。在临床诊断时,总是有一些残余的细胞功能。最近的研究——包括一项主要在比利时进行的研究——已经提供了原理证明,短期人源化抗t细胞抗体治疗能够在最近临床发病的成年1型糖尿病患者中保持剩余β细胞功能至少18个月。抗t细胞抗体治疗的效果在初始β细胞残余功能较高的患者中更为明显。由此产生的对代谢控制的稳定作用有望延缓慢性并发症并避免这些患者发生低血糖。带着类似的目标,非尿毒症c肽阴性的1型糖尿病患者接受β细胞移植。在过去几年中,这些移植物在抗胸腺细胞球蛋白、他克莫司和霉酚酸酯免疫抑制下的一年存活率超过80%,几乎没有原发性无功能的病例。然而,只有找到诱导移植物耐受的方法,并且能够克服有活力的人类供体细胞的短缺,才能实现广泛的应用。胰岛异种移植和干细胞治疗都为解决这一问题提供了可能的策略,并代表了深入研究的领域。最终目的是预防临床疾病。比利时糖尿病登记处和其他对1型糖尿病患者一级家庭成员的研究已经改进了对高血糖高危个体的识别,以便在糖尿病前期测试新的免疫治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Therapies aimed at preservation or restoration of beta cell function in type 1 diabetes.

Type 1 diabetes is caused by an immune mediated destruction of the insulin-secreting beta cells in the pancreas. The disease can become clinically apparent at any age. At clinical diagnosis, there is invariably some residual beta cell function. Recent studies--including one mainly conducted in Belgium--have provided proof of principle that short-term humanized anti-T-cell antibody treatment is able to preserve residual beta cell function for at least 18 months in adult type 1 diabetic patients with a recent clinical onset of disease. The effect of anti-T-cell antibody treatment is more pronounced among patients with initial higher residual beta-cell function. The resultant stabilizing effect on metabolic control is expected to delay chronic complications and avoid hypoglycemia in these patients. With a similar goal in mind, non-uremic C-peptide negative type 1 diabetic patients are offered beta cell transplantation. During the last years the one year survival of these grafts under immune suppression with Anti-Thymocyte-Globulin, tacrolimus and mycophenolate mofetil exceeds 80% with virtually no cases of primary non-function. Widespread application will however only occur if ways are found to induce operational graft tolerance and the shortage of viable human donor cells can be overcome. Both islet xenotransplantation and stem cell therapy provide possible strategies to solve this problem and represent areas of intense investigation. The ultimate goal is prevention of clinical disease. Studies by the Belgian Diabetes Registry and others in first degree family members of type 1 diabetic patients have refined identification of individuals at very high risk of hyperglycemia so that new immunological treatments can be tested in the prediabetic phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intrinsic factors affecting apoptosis in bovine in vitro produced embryos. Chemotherapy during pregnancy: pharmacokinetics and impact on foetal neurological development. Malaria: host-pathogen interactions, immunopathological complications and therapy. International and national initiatives in biobanking. Lung transplantation for respiratory failure; Belgium amongst the world leaders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1