慢性肾病血管钙化机制的实验研究

V Persy
{"title":"慢性肾病血管钙化机制的实验研究","authors":"V Persy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular calcification or ectopic calcification ofblood vessels forms an important element of the increased cardiovascular risk observed in patients with chronic kidney disease. In addition to the classical Framingham risk factors, specific uremia-related factors such as hyperphosphatemia and disturbed calcium and phosphorus metabolism contribute to the development of vascular calcification. To gain a better insight into the mechanism of this calcification process, experimental techniques were developed to induce and detect vascular calcification in rats with in vivo micro-CT imaging. By means of synchrotron-based micro-X-ray diffraction the mineral phase deposited in arteries of rats with adenine-induced chronic renal failure was found to consist mainly of hydroxyapatite, whereas calcifications induced with high dose vitamin D administration additionally contained whitlockite, a magnesium-containing mineral. Vascular calcification is an active, cell-regulated process. By immunohistochemically investigating the expression of bone-specific proteins in calciying arteries, we demonstrated that calcifying vascular smooth muscle cells are not only able to acquire an osteoblast-like phenotype, but can moreover transdifferentiate to chondrocyte-like cells, expressing the cartilage transcription factor sox9 and the cartilage extracellular matrix protein collagen II. This cartilage phenotype was also found in human aortic tissue. Finally, treatment of uremic rats with the calcium-free phosphate binder lanthanum carbonate was shown to inhibit the development of vascular calcification, implying that adequate phosphorus control without additional calcium load reduces vascular calcification. In the future, we will map the proteome of calcifying vascular smooth muscle cells and investigate the paradoxical association of vascular calcification with impaired bone mineralisation.</p>","PeriodicalId":76790,"journal":{"name":"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie","volume":"70 4","pages":"285-303"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Experimental study of the mechanism for vascular calcification in chronic kidney disease].\",\"authors\":\"V Persy\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular calcification or ectopic calcification ofblood vessels forms an important element of the increased cardiovascular risk observed in patients with chronic kidney disease. In addition to the classical Framingham risk factors, specific uremia-related factors such as hyperphosphatemia and disturbed calcium and phosphorus metabolism contribute to the development of vascular calcification. To gain a better insight into the mechanism of this calcification process, experimental techniques were developed to induce and detect vascular calcification in rats with in vivo micro-CT imaging. By means of synchrotron-based micro-X-ray diffraction the mineral phase deposited in arteries of rats with adenine-induced chronic renal failure was found to consist mainly of hydroxyapatite, whereas calcifications induced with high dose vitamin D administration additionally contained whitlockite, a magnesium-containing mineral. Vascular calcification is an active, cell-regulated process. By immunohistochemically investigating the expression of bone-specific proteins in calciying arteries, we demonstrated that calcifying vascular smooth muscle cells are not only able to acquire an osteoblast-like phenotype, but can moreover transdifferentiate to chondrocyte-like cells, expressing the cartilage transcription factor sox9 and the cartilage extracellular matrix protein collagen II. This cartilage phenotype was also found in human aortic tissue. Finally, treatment of uremic rats with the calcium-free phosphate binder lanthanum carbonate was shown to inhibit the development of vascular calcification, implying that adequate phosphorus control without additional calcium load reduces vascular calcification. In the future, we will map the proteome of calcifying vascular smooth muscle cells and investigate the paradoxical association of vascular calcification with impaired bone mineralisation.</p>\",\"PeriodicalId\":76790,\"journal\":{\"name\":\"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie\",\"volume\":\"70 4\",\"pages\":\"285-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血管钙化或血管异位钙化是慢性肾病患者心血管风险增加的重要因素。除了经典的Framingham危险因素外,特定的尿毒症相关因素,如高磷血症和钙磷代谢紊乱,也有助于血管钙化的发展。为了更好地了解这一钙化过程的机制,我们开发了用活体显微ct成像诱导和检测大鼠血管钙化的实验技术。通过同步微x射线衍射发现,腺嘌呤诱导的慢性肾衰竭大鼠动脉内沉积的矿物相主要是羟基磷灰石,而高剂量维生素D诱导的钙化物中还含有含镁矿物whitlockite。血管钙化是一个活跃的、细胞调控的过程。通过免疫组织化学研究钙化动脉中骨特异性蛋白的表达,我们证明钙化血管平滑肌细胞不仅能够获得成骨细胞样表型,而且还可以转分化为软骨细胞样细胞,表达软骨转录因子sox9和软骨细胞外基质蛋白胶原II。在人主动脉组织中也发现了这种软骨表型。最后,用无钙磷酸盐结合剂碳酸镧治疗尿毒症大鼠被证明可以抑制血管钙化的发展,这意味着在没有额外钙负荷的情况下,适当的磷控制可以减少血管钙化。在未来,我们将绘制钙化血管平滑肌细胞的蛋白质组图,并研究血管钙化与骨矿化受损的矛盾关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Experimental study of the mechanism for vascular calcification in chronic kidney disease].

Vascular calcification or ectopic calcification ofblood vessels forms an important element of the increased cardiovascular risk observed in patients with chronic kidney disease. In addition to the classical Framingham risk factors, specific uremia-related factors such as hyperphosphatemia and disturbed calcium and phosphorus metabolism contribute to the development of vascular calcification. To gain a better insight into the mechanism of this calcification process, experimental techniques were developed to induce and detect vascular calcification in rats with in vivo micro-CT imaging. By means of synchrotron-based micro-X-ray diffraction the mineral phase deposited in arteries of rats with adenine-induced chronic renal failure was found to consist mainly of hydroxyapatite, whereas calcifications induced with high dose vitamin D administration additionally contained whitlockite, a magnesium-containing mineral. Vascular calcification is an active, cell-regulated process. By immunohistochemically investigating the expression of bone-specific proteins in calciying arteries, we demonstrated that calcifying vascular smooth muscle cells are not only able to acquire an osteoblast-like phenotype, but can moreover transdifferentiate to chondrocyte-like cells, expressing the cartilage transcription factor sox9 and the cartilage extracellular matrix protein collagen II. This cartilage phenotype was also found in human aortic tissue. Finally, treatment of uremic rats with the calcium-free phosphate binder lanthanum carbonate was shown to inhibit the development of vascular calcification, implying that adequate phosphorus control without additional calcium load reduces vascular calcification. In the future, we will map the proteome of calcifying vascular smooth muscle cells and investigate the paradoxical association of vascular calcification with impaired bone mineralisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intrinsic factors affecting apoptosis in bovine in vitro produced embryos. Chemotherapy during pregnancy: pharmacokinetics and impact on foetal neurological development. Malaria: host-pathogen interactions, immunopathological complications and therapy. International and national initiatives in biobanking. Lung transplantation for respiratory failure; Belgium amongst the world leaders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1