{"title":"光系统II光化学损伤的概念及过度兴奋的作用","authors":"Alonso Zavafer , Cristian Mancilla","doi":"10.1016/j.jphotochemrev.2021.100421","DOIUrl":null,"url":null,"abstract":"<div><p>Photoinhibition is one of the most controversial topics in photophysiology. Well into the 21 st century, scientists have not agreed on the mechanism of action, primary site, and roles of excess energy absorbed by photosynthetic pigments. It is recognized that Photosystem II is the most fragile component during photoinhibition and that excess excitation absorbed by the photosynthetic pigments has a strong impact on it. Consensus is yet to come on terminology, guidelines to study photoinhibition, or boundaries of what can be considered photodamage. Some of these controversies are the result of how we understand the phenomenon of photoinhibition, as this is what determines a given experimental design. Thus, how we understand photodamage depends on the philosophical approach of each group. While some efforts have been made in the parametrization of Photosystem II photoinhibition, an updated review about the concepts of photoinhibition of Photosystem II and how to study it is still pending. In this work, a review of the concepts used in the field of photoinhibition is presented, accompanied by a synopsis on the history and mechanisms of action.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"47 ","pages":"Article 100421"},"PeriodicalIF":12.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100421","citationCount":"24","resultStr":"{\"title\":\"Concepts of photochemical damage of Photosystem II and the role of excessive excitation\",\"authors\":\"Alonso Zavafer , Cristian Mancilla\",\"doi\":\"10.1016/j.jphotochemrev.2021.100421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photoinhibition is one of the most controversial topics in photophysiology. Well into the 21 st century, scientists have not agreed on the mechanism of action, primary site, and roles of excess energy absorbed by photosynthetic pigments. It is recognized that Photosystem II is the most fragile component during photoinhibition and that excess excitation absorbed by the photosynthetic pigments has a strong impact on it. Consensus is yet to come on terminology, guidelines to study photoinhibition, or boundaries of what can be considered photodamage. Some of these controversies are the result of how we understand the phenomenon of photoinhibition, as this is what determines a given experimental design. Thus, how we understand photodamage depends on the philosophical approach of each group. While some efforts have been made in the parametrization of Photosystem II photoinhibition, an updated review about the concepts of photoinhibition of Photosystem II and how to study it is still pending. In this work, a review of the concepts used in the field of photoinhibition is presented, accompanied by a synopsis on the history and mechanisms of action.</p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"47 \",\"pages\":\"Article 100421\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100421\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556721000204\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556721000204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Concepts of photochemical damage of Photosystem II and the role of excessive excitation
Photoinhibition is one of the most controversial topics in photophysiology. Well into the 21 st century, scientists have not agreed on the mechanism of action, primary site, and roles of excess energy absorbed by photosynthetic pigments. It is recognized that Photosystem II is the most fragile component during photoinhibition and that excess excitation absorbed by the photosynthetic pigments has a strong impact on it. Consensus is yet to come on terminology, guidelines to study photoinhibition, or boundaries of what can be considered photodamage. Some of these controversies are the result of how we understand the phenomenon of photoinhibition, as this is what determines a given experimental design. Thus, how we understand photodamage depends on the philosophical approach of each group. While some efforts have been made in the parametrization of Photosystem II photoinhibition, an updated review about the concepts of photoinhibition of Photosystem II and how to study it is still pending. In this work, a review of the concepts used in the field of photoinhibition is presented, accompanied by a synopsis on the history and mechanisms of action.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.