{"title":"神经胶质细胞在影响背根神经节细胞的神经突延伸中的作用。","authors":"Kai-Yu Ng, Yung H Wong, Helen Wise","doi":"10.1017/S1740925X09990433","DOIUrl":null,"url":null,"abstract":"<p><p>When pretreated with pertussis toxin (PTX), the neurites of adult rat dorsal root ganglion (DRG) cells in mixed cell cultures retract over a period of 2 h following the initial stimulus of removal from the cell culture incubator for brief periods of observation. The purpose of this investigation was to determine whether this PTX-dependent response was specific to any one of the three subpopulations of DRG neurons. However, no neurite retraction response was observed in neuron-enriched populations of cells, or in cultures enriched in isolectin B4 (IB4)-positive neurons or in IB4-negative neurons. But, the addition of non-neuronal cells, and/or medium conditioned by non-neuronal cells, was sufficient to restore the PTX-dependent neurite retraction response, but only in large diameter IB4-negative neurons. In conclusion, we have identified a regulatory response, mediated by Gi/o-proteins, which prevents retraction of neurites in large diameter IB4-negative cells of adult rat DRG. The non-neuronal cells of adult rat DRG constitutively release factor/s that can stimulate neurite retraction of a subset of isolated DRG neurons, but this property of non-neuronal cells is only observed when the Gi/o-proteins of large diameter IB4-negative cells are inhibited.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":"6 1","pages":"19-29"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1740925X09990433","citationCount":"10","resultStr":"{\"title\":\"The role of glial cells in influencing neurite extension by dorsal root ganglion cells.\",\"authors\":\"Kai-Yu Ng, Yung H Wong, Helen Wise\",\"doi\":\"10.1017/S1740925X09990433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When pretreated with pertussis toxin (PTX), the neurites of adult rat dorsal root ganglion (DRG) cells in mixed cell cultures retract over a period of 2 h following the initial stimulus of removal from the cell culture incubator for brief periods of observation. The purpose of this investigation was to determine whether this PTX-dependent response was specific to any one of the three subpopulations of DRG neurons. However, no neurite retraction response was observed in neuron-enriched populations of cells, or in cultures enriched in isolectin B4 (IB4)-positive neurons or in IB4-negative neurons. But, the addition of non-neuronal cells, and/or medium conditioned by non-neuronal cells, was sufficient to restore the PTX-dependent neurite retraction response, but only in large diameter IB4-negative neurons. In conclusion, we have identified a regulatory response, mediated by Gi/o-proteins, which prevents retraction of neurites in large diameter IB4-negative cells of adult rat DRG. The non-neuronal cells of adult rat DRG constitutively release factor/s that can stimulate neurite retraction of a subset of isolated DRG neurons, but this property of non-neuronal cells is only observed when the Gi/o-proteins of large diameter IB4-negative cells are inhibited.</p>\",\"PeriodicalId\":19153,\"journal\":{\"name\":\"Neuron glia biology\",\"volume\":\"6 1\",\"pages\":\"19-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1740925X09990433\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron glia biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1740925X09990433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X09990433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/12/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The role of glial cells in influencing neurite extension by dorsal root ganglion cells.
When pretreated with pertussis toxin (PTX), the neurites of adult rat dorsal root ganglion (DRG) cells in mixed cell cultures retract over a period of 2 h following the initial stimulus of removal from the cell culture incubator for brief periods of observation. The purpose of this investigation was to determine whether this PTX-dependent response was specific to any one of the three subpopulations of DRG neurons. However, no neurite retraction response was observed in neuron-enriched populations of cells, or in cultures enriched in isolectin B4 (IB4)-positive neurons or in IB4-negative neurons. But, the addition of non-neuronal cells, and/or medium conditioned by non-neuronal cells, was sufficient to restore the PTX-dependent neurite retraction response, but only in large diameter IB4-negative neurons. In conclusion, we have identified a regulatory response, mediated by Gi/o-proteins, which prevents retraction of neurites in large diameter IB4-negative cells of adult rat DRG. The non-neuronal cells of adult rat DRG constitutively release factor/s that can stimulate neurite retraction of a subset of isolated DRG neurons, but this property of non-neuronal cells is only observed when the Gi/o-proteins of large diameter IB4-negative cells are inhibited.