Eric R. Choban , Larry J. Markoski , Andrzej Wieckowski , Paul J.A. Kenis
{"title":"基于层流的微流体燃料电池","authors":"Eric R. Choban , Larry J. Markoski , Andrzej Wieckowski , Paul J.A. Kenis","doi":"10.1016/j.jpowsour.2003.11.052","DOIUrl":null,"url":null,"abstract":"<div><p>This paper discusses a novel microfluidic fuel cell concept that utilizes the occurrence of multi-stream laminar flow at the microscale to keep the fuel and oxidant streams separated yet in diffusional contact. The system consists of a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and continue to flow laminarly in parallel between two catalyst-covered electrodes on opposing walls without turbulent mixing. Preliminary results indicate that this novel fuel cell concept may lead to the development of efficient room temperature power sources of microscopic dimensions that are comparable or better in performance than conventional polymer–electrolyte-membrane based microfuel cells that typically operate between 60 and 80<!--> <!-->°C.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2004-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jpowsour.2003.11.052","citationCount":"485","resultStr":"{\"title\":\"Microfluidic fuel cell based on laminar flow\",\"authors\":\"Eric R. Choban , Larry J. Markoski , Andrzej Wieckowski , Paul J.A. Kenis\",\"doi\":\"10.1016/j.jpowsour.2003.11.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper discusses a novel microfluidic fuel cell concept that utilizes the occurrence of multi-stream laminar flow at the microscale to keep the fuel and oxidant streams separated yet in diffusional contact. The system consists of a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and continue to flow laminarly in parallel between two catalyst-covered electrodes on opposing walls without turbulent mixing. Preliminary results indicate that this novel fuel cell concept may lead to the development of efficient room temperature power sources of microscopic dimensions that are comparable or better in performance than conventional polymer–electrolyte-membrane based microfuel cells that typically operate between 60 and 80<!--> <!-->°C.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2004-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jpowsour.2003.11.052\",\"citationCount\":\"485\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775303011789\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775303011789","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
This paper discusses a novel microfluidic fuel cell concept that utilizes the occurrence of multi-stream laminar flow at the microscale to keep the fuel and oxidant streams separated yet in diffusional contact. The system consists of a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and continue to flow laminarly in parallel between two catalyst-covered electrodes on opposing walls without turbulent mixing. Preliminary results indicate that this novel fuel cell concept may lead to the development of efficient room temperature power sources of microscopic dimensions that are comparable or better in performance than conventional polymer–electrolyte-membrane based microfuel cells that typically operate between 60 and 80 °C.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems