吲哚菁绿基丝素治疗纳米探针用于宫颈疾病体内nir /II荧光成像的临床研究

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nanomedicine: Nanotechnology, Biology and Medicine Pub Date : 2023-01-01 DOI:10.1016/j.nano.2022.102615
Rong Ma PhD , Xiaohui Tang MS , Mei Wang PhD , Zhong Du MS , Shuang Chen MS , Youqiang Heng MS , Lijun Zhu MS , Nuernisha Alifu PhD , Xueliang Zhang PhD , Cailing Ma PhD
{"title":"吲哚菁绿基丝素治疗纳米探针用于宫颈疾病体内nir /II荧光成像的临床研究","authors":"Rong Ma PhD ,&nbsp;Xiaohui Tang MS ,&nbsp;Mei Wang PhD ,&nbsp;Zhong Du MS ,&nbsp;Shuang Chen MS ,&nbsp;Youqiang Heng MS ,&nbsp;Lijun Zhu MS ,&nbsp;Nuernisha Alifu PhD ,&nbsp;Xueliang Zhang PhD ,&nbsp;Cailing Ma PhD","doi":"10.1016/j.nano.2022.102615","DOIUrl":null,"url":null,"abstract":"<div><p>Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"47 ","pages":"Article 102615"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases\",\"authors\":\"Rong Ma PhD ,&nbsp;Xiaohui Tang MS ,&nbsp;Mei Wang PhD ,&nbsp;Zhong Du MS ,&nbsp;Shuang Chen MS ,&nbsp;Youqiang Heng MS ,&nbsp;Lijun Zhu MS ,&nbsp;Nuernisha Alifu PhD ,&nbsp;Xueliang Zhang PhD ,&nbsp;Cailing Ma PhD\",\"doi\":\"10.1016/j.nano.2022.102615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"47 \",\"pages\":\"Article 102615\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963422001010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

淋巴结病、输卵管阻塞等宫颈疾病威胁着女性的健康。然而,传统的诊断方法仍然存在不足。NIR-II荧光成像具有低散射、可忽略自身荧光和高空间分辨率的优点,可能是一种理想的选择。为了获得高质量的NIR-II荧光成像,选择合适的纳米探针成为重要问题。ICG作为一种小分子光热剂,由于其自身的缺陷,限制了其广泛应用。本文合成了天然丝素(SF)并包封ICG分子形成SF@ICG纳米粒子(NPs)。经过详细分析,SF@ICG NPs在808 nm激光照射下表现出优异的稳定性和较长的循环时间,具有较强的NIR-II荧光发射,良好的光稳定性、生物相容性和光热性能。此外,SF@ICG NPs用于淋巴结/淋巴管造影和输卵管血管造影的NIR-II荧光成像。该方法具有分辨率高、灵敏度高的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases

Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction Delivery of gene editing therapeutics Liposomes - Human phagocytes interplay in whole blood: effect of liposome design Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1