Gang Huang, Chunfu Zhang, Shunzi Li, Chalermchai Khemtong, Su-Geun Yang, Ruhai Tian, John D Minna, Kathlynn C Brown, Jinming Gao
{"title":"一种用于肺癌成像的超顺磁性氧化铁纳米颗粒表面修饰的新策略。","authors":"Gang Huang, Chunfu Zhang, Shunzi Li, Chalermchai Khemtong, Su-Geun Yang, Ruhai Tian, John D Minna, Kathlynn C Brown, Jinming Gao","doi":"10.1039/b902358e","DOIUrl":null,"url":null,"abstract":"<p><p>Superparamagnetic iron oxide (SPIO) nanoparticles are widely used in magnetic resonance imaging (MRI) as versatile ultra-sensitive nanoprobes for cellular and molecular imaging of cancer. In this study, we report a one-step procedure for the surface functionalization of SPIO nanoparticles with a lung cancer-targeting peptide. The hydrophobic surfactants on the as-synthesized SPIO are displaced by the peptide containing a poly(ethylene glycol)-tethered cysteine residue through ligand exchange. The resulting SPIO particles are biocompatible and demonstrate high T(2) relaxivity. The nanoprobes are specific in targeting α(v)β(6)-expressing lung cancer cells as demonstrated by MR imaging and Prussian blue staining. This facile surface chemistry and the functional design of the proposed SPIO system may provide a powerful nanoplatform for the molecular diagnosis of lung cancer.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"19 ","pages":"6367-6372"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/b902358e","citationCount":"82","resultStr":"{\"title\":\"A Novel Strategy for Surface Modification of Superparamagnetic Iron Oxide Nanoparticles for Lung Cancer Imaging.\",\"authors\":\"Gang Huang, Chunfu Zhang, Shunzi Li, Chalermchai Khemtong, Su-Geun Yang, Ruhai Tian, John D Minna, Kathlynn C Brown, Jinming Gao\",\"doi\":\"10.1039/b902358e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Superparamagnetic iron oxide (SPIO) nanoparticles are widely used in magnetic resonance imaging (MRI) as versatile ultra-sensitive nanoprobes for cellular and molecular imaging of cancer. In this study, we report a one-step procedure for the surface functionalization of SPIO nanoparticles with a lung cancer-targeting peptide. The hydrophobic surfactants on the as-synthesized SPIO are displaced by the peptide containing a poly(ethylene glycol)-tethered cysteine residue through ligand exchange. The resulting SPIO particles are biocompatible and demonstrate high T(2) relaxivity. The nanoprobes are specific in targeting α(v)β(6)-expressing lung cancer cells as demonstrated by MR imaging and Prussian blue staining. This facile surface chemistry and the functional design of the proposed SPIO system may provide a powerful nanoplatform for the molecular diagnosis of lung cancer.</p>\",\"PeriodicalId\":16297,\"journal\":{\"name\":\"Journal of Materials Chemistry\",\"volume\":\"19 \",\"pages\":\"6367-6372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/b902358e\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/b902358e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/b902358e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Strategy for Surface Modification of Superparamagnetic Iron Oxide Nanoparticles for Lung Cancer Imaging.
Superparamagnetic iron oxide (SPIO) nanoparticles are widely used in magnetic resonance imaging (MRI) as versatile ultra-sensitive nanoprobes for cellular and molecular imaging of cancer. In this study, we report a one-step procedure for the surface functionalization of SPIO nanoparticles with a lung cancer-targeting peptide. The hydrophobic surfactants on the as-synthesized SPIO are displaced by the peptide containing a poly(ethylene glycol)-tethered cysteine residue through ligand exchange. The resulting SPIO particles are biocompatible and demonstrate high T(2) relaxivity. The nanoprobes are specific in targeting α(v)β(6)-expressing lung cancer cells as demonstrated by MR imaging and Prussian blue staining. This facile surface chemistry and the functional design of the proposed SPIO system may provide a powerful nanoplatform for the molecular diagnosis of lung cancer.