卫星神经胶质细胞嘌呤受体在感觉神经节疼痛传递中的表达和贡献:最新进展。

Giovanni Villa, Marta Fumagalli, Claudia Verderio, Maria P Abbracchio, Stefania Ceruti
{"title":"卫星神经胶质细胞嘌呤受体在感觉神经节疼痛传递中的表达和贡献:最新进展。","authors":"Giovanni Villa,&nbsp;Marta Fumagalli,&nbsp;Claudia Verderio,&nbsp;Maria P Abbracchio,&nbsp;Stefania Ceruti","doi":"10.1017/S1740925X10000086","DOIUrl":null,"url":null,"abstract":"<p><p>The role of adenosine-5'-triphosphate (ATP) and of the ligand-gated P2X3 receptor in neuronal dorsal root ganglia (DRG) pain transmission is relatively well established. Much less is known about the purinergic system in trigeminal ganglia (TG), which are involved in certain types of untreatable neuropathic and inflammatory pain, as well as in migraine. Emerging data suggest that purinergic metabotropic P2Y receptors on both neurons and satellite glial cells (SGCs) may also participate in both physiological and pathological pain development. Here, we provide an updated literature review on the role of purinergic signaling in sensory ganglia, with special emphasis on P2Y receptors on SGCs. We also provide new original data showing a time-dependent downregulation of P2Y2 and P2Y4 receptor expression and function in purified SGCs cultures from TG, in comparison with primary mixed neuron-SGCs cultures. These data highlight the importance of the neuron-glia cross-talk in determining the SGCs phenotype. Finally, we show that, in mixed TG cultures, both adenine and guanosine induce intracellular calcium transients in neurons but not in SGCs, suggesting that also these purinergic-related molecules can participate in pain signaling. These findings may have relevant implications for the development of new therapeutic strategies for chronic pain treatment.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":"6 1","pages":"31-42"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1740925X10000086","citationCount":"61","resultStr":"{\"title\":\"Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update.\",\"authors\":\"Giovanni Villa,&nbsp;Marta Fumagalli,&nbsp;Claudia Verderio,&nbsp;Maria P Abbracchio,&nbsp;Stefania Ceruti\",\"doi\":\"10.1017/S1740925X10000086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of adenosine-5'-triphosphate (ATP) and of the ligand-gated P2X3 receptor in neuronal dorsal root ganglia (DRG) pain transmission is relatively well established. Much less is known about the purinergic system in trigeminal ganglia (TG), which are involved in certain types of untreatable neuropathic and inflammatory pain, as well as in migraine. Emerging data suggest that purinergic metabotropic P2Y receptors on both neurons and satellite glial cells (SGCs) may also participate in both physiological and pathological pain development. Here, we provide an updated literature review on the role of purinergic signaling in sensory ganglia, with special emphasis on P2Y receptors on SGCs. We also provide new original data showing a time-dependent downregulation of P2Y2 and P2Y4 receptor expression and function in purified SGCs cultures from TG, in comparison with primary mixed neuron-SGCs cultures. These data highlight the importance of the neuron-glia cross-talk in determining the SGCs phenotype. Finally, we show that, in mixed TG cultures, both adenine and guanosine induce intracellular calcium transients in neurons but not in SGCs, suggesting that also these purinergic-related molecules can participate in pain signaling. These findings may have relevant implications for the development of new therapeutic strategies for chronic pain treatment.</p>\",\"PeriodicalId\":19153,\"journal\":{\"name\":\"Neuron glia biology\",\"volume\":\"6 1\",\"pages\":\"31-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1740925X10000086\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron glia biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1740925X10000086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X10000086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

腺苷-5'-三磷酸腺苷(ATP)和配体门控P2X3受体在神经元背根神经节(DRG)疼痛传递中的作用相对较好地确立。三叉神经节(TG)中的嘌呤能系统与某些类型的无法治疗的神经性疼痛和炎症性疼痛以及偏头痛有关,但人们对它的了解却少得多。新出现的数据表明,神经元和卫星胶质细胞(SGCs)上的嘌呤能代谢P2Y受体也可能参与生理性和病理性疼痛的发展。在此,我们对嘌呤能信号在感觉神经节中的作用进行了最新的文献综述,特别强调了P2Y受体在SGCs中的作用。我们还提供了新的原始数据,显示与原代混合神经元-SGCs培养相比,TG纯化SGCs培养中P2Y2和P2Y4受体表达和功能的时间依赖性下调。这些数据强调了神经元-胶质细胞串扰在确定SGCs表型中的重要性。最后,我们发现,在混合TG培养中,腺嘌呤和鸟苷在神经元中诱导细胞内钙瞬变,但在SGCs中不诱导,这表明这些嘌呤能相关分子也可以参与疼痛信号传导。这些发现可能对慢性疼痛治疗的新治疗策略的发展具有相关的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update.

The role of adenosine-5'-triphosphate (ATP) and of the ligand-gated P2X3 receptor in neuronal dorsal root ganglia (DRG) pain transmission is relatively well established. Much less is known about the purinergic system in trigeminal ganglia (TG), which are involved in certain types of untreatable neuropathic and inflammatory pain, as well as in migraine. Emerging data suggest that purinergic metabotropic P2Y receptors on both neurons and satellite glial cells (SGCs) may also participate in both physiological and pathological pain development. Here, we provide an updated literature review on the role of purinergic signaling in sensory ganglia, with special emphasis on P2Y receptors on SGCs. We also provide new original data showing a time-dependent downregulation of P2Y2 and P2Y4 receptor expression and function in purified SGCs cultures from TG, in comparison with primary mixed neuron-SGCs cultures. These data highlight the importance of the neuron-glia cross-talk in determining the SGCs phenotype. Finally, we show that, in mixed TG cultures, both adenine and guanosine induce intracellular calcium transients in neurons but not in SGCs, suggesting that also these purinergic-related molecules can participate in pain signaling. These findings may have relevant implications for the development of new therapeutic strategies for chronic pain treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron glia biology
Neuron glia biology 医学-神经科学
自引率
0.00%
发文量
0
期刊最新文献
Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain. The effects of L-NAME on neuronal NOS and SOD1 expression in the DRG-spinal cord network of axotomised Thy 1.2 eGFP mice. Exposure to environmental enrichment prior to a cerebral cortex stab wound attenuates the postlesional astroglia response in rats. Evidence of microglial activation in autism and its possible role in brain underconnectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1