Farrokh Alemi, Harold Erdman, Igor Griva, Charles H Evans
{"title":"需要改进的统计方法来推进个性化医疗。","authors":"Farrokh Alemi, Harold Erdman, Igor Griva, Charles H Evans","doi":"10.2174/1876399500901010016","DOIUrl":null,"url":null,"abstract":"<p><p>Common methods of statistical analysis, e.g. Analysis of Variance and Discriminant Analysis, are not necessarily optimal in selecting therapy for an individual patient. These methods rely on group differences to identify markers for disease or successful interventions and ignore sub-group differences when the number of sub-groups is large. In these circumstances, they provide the same advice to an individual as the average patient. Personalized medicine needs new statistical methods that allow treatment efficacy to be tailored to a specific patient, based on a large number of patient characteristics. One such approach is the sequential k-nearest neighbor analysis (patients-like-me algorithm). In this approach, the k most similar patients are examined sequentially until a statistically significant conclusion about the efficacy of treatment for the patient-at-hand can be arrived at. For some patients, the algorithm stops before the entire set of data is examined and provides beneficial advice that may contradict recommendations made to the average patient. Many problems remain in creating statistical tools that can help individual patients but this is an important area in which progress in statistical thinking is helpful.</p>","PeriodicalId":89038,"journal":{"name":"The open translational medicine journal","volume":"1 ","pages":"16-20"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1876399500901010016","citationCount":"33","resultStr":"{\"title\":\"Improved Statistical Methods are Needed to Advance Personalized Medicine.\",\"authors\":\"Farrokh Alemi, Harold Erdman, Igor Griva, Charles H Evans\",\"doi\":\"10.2174/1876399500901010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Common methods of statistical analysis, e.g. Analysis of Variance and Discriminant Analysis, are not necessarily optimal in selecting therapy for an individual patient. These methods rely on group differences to identify markers for disease or successful interventions and ignore sub-group differences when the number of sub-groups is large. In these circumstances, they provide the same advice to an individual as the average patient. Personalized medicine needs new statistical methods that allow treatment efficacy to be tailored to a specific patient, based on a large number of patient characteristics. One such approach is the sequential k-nearest neighbor analysis (patients-like-me algorithm). In this approach, the k most similar patients are examined sequentially until a statistically significant conclusion about the efficacy of treatment for the patient-at-hand can be arrived at. For some patients, the algorithm stops before the entire set of data is examined and provides beneficial advice that may contradict recommendations made to the average patient. Many problems remain in creating statistical tools that can help individual patients but this is an important area in which progress in statistical thinking is helpful.</p>\",\"PeriodicalId\":89038,\"journal\":{\"name\":\"The open translational medicine journal\",\"volume\":\"1 \",\"pages\":\"16-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1876399500901010016\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open translational medicine journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1876399500901010016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open translational medicine journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876399500901010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Statistical Methods are Needed to Advance Personalized Medicine.
Common methods of statistical analysis, e.g. Analysis of Variance and Discriminant Analysis, are not necessarily optimal in selecting therapy for an individual patient. These methods rely on group differences to identify markers for disease or successful interventions and ignore sub-group differences when the number of sub-groups is large. In these circumstances, they provide the same advice to an individual as the average patient. Personalized medicine needs new statistical methods that allow treatment efficacy to be tailored to a specific patient, based on a large number of patient characteristics. One such approach is the sequential k-nearest neighbor analysis (patients-like-me algorithm). In this approach, the k most similar patients are examined sequentially until a statistically significant conclusion about the efficacy of treatment for the patient-at-hand can be arrived at. For some patients, the algorithm stops before the entire set of data is examined and provides beneficial advice that may contradict recommendations made to the average patient. Many problems remain in creating statistical tools that can help individual patients but this is an important area in which progress in statistical thinking is helpful.