{"title":"光合绿色丝状细菌trichoides Oscillochloris叶绿体基板亚天线中的CsmA蛋白与BChl a相关。","authors":"Anastasiya Zobova, Alexandra Taisova, Eugeny Lukashev, Nataliya Fedorova, Ludmila Baratova, Zoya Fetisova","doi":"10.1155/2011/860382","DOIUrl":null,"url":null,"abstract":"<p><p>The baseplate subantenna in chlorosomes of green anoxygenic photosynthetic bacteria, belonging to the families Chloroflexaceae and Chlorobiaceae, is known to represent a complex of bacteriochlorophyll (BChl) a with the ~6 kDa CsmA proteins. Earlier, we showed the existence of a similar BChl a subantenna in chlorosomes of the photosynthetic green bacterium Oscillochloris trichoides, member of Oscillochloridaceae, the third family of green photosynthetic bacteria. However, this BChl a subantenna was not visually identified in absorption spectra of isolated Osc. trichoides chlorosomes in contrast to those of Chloroflexaceae and Chlorobiaceae. In this work, using room and low-temperature absorbance and fluorescence spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of alkaline-treated and untreated chlorosomes of Osc. trichoides, we showed that the baseplate BChl a subantenna does exist in Oscillochloridaceae chlorosomes as a complex of BChl a with the 5.7 kDa CsmA protein. The present results support the idea that the baseplate subantenna, representing a complex of BChl a with a ~6 kDa CsmA protein, is a universal interface between the BChl c subantenna of chlorosomes and the nearest light-harvesting BChl a subantenna in all three known families of green anoxygenic photosynthetic bacteria.</p>","PeriodicalId":73623,"journal":{"name":"Journal of biophysics (Hindawi Publishing Corporation : Online)","volume":"2011 ","pages":"860382"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2011/860382","citationCount":"6","resultStr":"{\"title\":\"CsmA Protein is Associated with BChl a in the Baseplate Subantenna of Chlorosomes of the Photosynthetic Green Filamentous Bacterium Oscillochloris trichoides belonging to the Family Oscillochloridaceae.\",\"authors\":\"Anastasiya Zobova, Alexandra Taisova, Eugeny Lukashev, Nataliya Fedorova, Ludmila Baratova, Zoya Fetisova\",\"doi\":\"10.1155/2011/860382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The baseplate subantenna in chlorosomes of green anoxygenic photosynthetic bacteria, belonging to the families Chloroflexaceae and Chlorobiaceae, is known to represent a complex of bacteriochlorophyll (BChl) a with the ~6 kDa CsmA proteins. Earlier, we showed the existence of a similar BChl a subantenna in chlorosomes of the photosynthetic green bacterium Oscillochloris trichoides, member of Oscillochloridaceae, the third family of green photosynthetic bacteria. However, this BChl a subantenna was not visually identified in absorption spectra of isolated Osc. trichoides chlorosomes in contrast to those of Chloroflexaceae and Chlorobiaceae. In this work, using room and low-temperature absorbance and fluorescence spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of alkaline-treated and untreated chlorosomes of Osc. trichoides, we showed that the baseplate BChl a subantenna does exist in Oscillochloridaceae chlorosomes as a complex of BChl a with the 5.7 kDa CsmA protein. The present results support the idea that the baseplate subantenna, representing a complex of BChl a with a ~6 kDa CsmA protein, is a universal interface between the BChl c subantenna of chlorosomes and the nearest light-harvesting BChl a subantenna in all three known families of green anoxygenic photosynthetic bacteria.</p>\",\"PeriodicalId\":73623,\"journal\":{\"name\":\"Journal of biophysics (Hindawi Publishing Corporation : Online)\",\"volume\":\"2011 \",\"pages\":\"860382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2011/860382\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophysics (Hindawi Publishing Corporation : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/860382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophysics (Hindawi Publishing Corporation : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/860382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
CsmA Protein is Associated with BChl a in the Baseplate Subantenna of Chlorosomes of the Photosynthetic Green Filamentous Bacterium Oscillochloris trichoides belonging to the Family Oscillochloridaceae.
The baseplate subantenna in chlorosomes of green anoxygenic photosynthetic bacteria, belonging to the families Chloroflexaceae and Chlorobiaceae, is known to represent a complex of bacteriochlorophyll (BChl) a with the ~6 kDa CsmA proteins. Earlier, we showed the existence of a similar BChl a subantenna in chlorosomes of the photosynthetic green bacterium Oscillochloris trichoides, member of Oscillochloridaceae, the third family of green photosynthetic bacteria. However, this BChl a subantenna was not visually identified in absorption spectra of isolated Osc. trichoides chlorosomes in contrast to those of Chloroflexaceae and Chlorobiaceae. In this work, using room and low-temperature absorbance and fluorescence spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of alkaline-treated and untreated chlorosomes of Osc. trichoides, we showed that the baseplate BChl a subantenna does exist in Oscillochloridaceae chlorosomes as a complex of BChl a with the 5.7 kDa CsmA protein. The present results support the idea that the baseplate subantenna, representing a complex of BChl a with a ~6 kDa CsmA protein, is a universal interface between the BChl c subantenna of chlorosomes and the nearest light-harvesting BChl a subantenna in all three known families of green anoxygenic photosynthetic bacteria.