[This corrects the article DOI: 10.1155/2014/675905.].
[This corrects the article DOI: 10.1155/2014/675905.].
In order to study Staphylococcus epidermis and Staphylococcus aureus in vitro viability after the exposure to ultraviolet (UV) light and riboflavin, twelve strains of Staphylococcus epidermis and twelve strains of Staphylococcus aureus were isolated from patients with bacterial keratitis. The growth situation of Staphylococcus epidermidis and Staphylococcus aureus under different experimental conditions was qualitatively observed. The number of colonies surviving bacteria was counted under different UV light power and different exposure time. The experiment showed that there was no inhibition effect on the growth of bacteria using riboflavin alone. In UV alone group and UV-riboflavin group, inhibition effect on the bacteria growth was found. The UV-riboflavin combination had better inhibition effect on bacteria than UV irradiation alone. The amount of bacteria in the UV-riboflavin group was decreased by 99.1%~99.5% and 54.8%~64.6% in the UV alone group, when the UV light power was 10.052 mW/cm2 and the irradiation time was 30 min. Moreover, with the increase of the UV power or irradiation time, the survival rates of bacteria were rapidly reduced. Compared with Staphylococcus aureus, Staphylococcus epidermis was more easily to be killed under the action of UV light combined with riboflavin.
The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules.
The method of lifespan extension that is a practical application of the informational theory of aging is proposed. In this theory, the degradation (error accumulation) of the genetic information in cells is considered a main cause of aging. According to it, our method is based on the transplantation of genetically identical (or similar) stem cells with the lower number of genomic errors to the old recipients. For humans and large mammals, this method can be realized by cryopreservation of their own stem cells, taken in a young age, for the later autologous transplantation in old age. To test this method experimentally, we chose laboratory animals of relatively short lifespan (mouse). Because it is difficult to isolate the required amount of the stem cells (e.g., bone marrow) without significant damage for animals, we used the bone marrow transplantation from sacrificed inbred young donors. It is shown that the lifespan extension of recipients depends on level of their genetic similarity (syngeneity) with donors. We have achieved the lifespan increase of the experimental mice by 34% when the transplantation of the bone marrow with high level of genetic similarity was used.
Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect.
Current chemotherapies against trypanosomiasis are beset with diverse challenges, a situation which underscores the numerous research efforts aimed at finding newer and effective treatments. Arginine kinase of trypanosome has been validated as target for drug development against trypanosomiasis. The present study investigated the interaction between a recombinant form of the arginine kinase (rTbAK) of trypanosome and gallotannin. The interaction between gallotannin and recombinant arginine kinase of Trypanosoma brucei caused significant decrease of enzyme activity. Kinetic analysis revealed the interaction to be of noncompetitive inhibition. Further thermodynamic analysis showed that the interaction between gallotannin and the recombinant arginine kinase was nonspontaneous and involved hydrophobic forces. The K sv values and the FRET analysis suggest that static quenching of fluorescence intensity by gallotannin was static. Data revealed inhibitory interactions between gallotannin and rTbAK of trypanosome. Although the mechanism of inhibition is not clear yet, molecular docking studies are ongoing to clearly define the inhibitory interactions between the gallotannin and rTbAK. The knowledge of such binding properties would enrich development of selective inhibitors for the arginine kinase of Trypanosoma brucei.
An approximate value of the diamagnetic anisotropy of the tubulin dimer, Δχ dimer, has been determined assuming axial symmetry and that only the α -helices and β -sheets contribute to the anisotropy. Two approaches have been utilized: (a) using the value for the Δχ α for an α -helical peptide bond given by Pauling (1979) and (b) using the previously determined anisotropy of fibrinogen as a calibration standard. The Δχ dimer ≈ 4 × 10(-27) JT(-2) obtained from these measurements are similar to within 20%. Although Cotton-Mouton measurements alone cannot be used to estimate Δχ directly, the value we measured, CMdimer = (1.41 ± 0.03) × 10(-8) T(-2)cm(2)mg(-1), is consistent with the above estimate for Δχ dimer. The method utilized for the determination of the tubulin dimer diamagnetic susceptibility is applicable to other proteins and macromolecular assemblies as well.
Natural dyes have become a viable alternative to expensive organic sensitizers because of their low cost of production, abundance in supply, and eco-friendliness. We evaluated 35 native plants containing anthocyanin pigments as potential sensitizers for DSSCs. Melastoma malabathricum (fruit pulp), Hibiscus rosa-sinensis (flower), and Codiaeum variegatum (leaves) showed the highest absorption peaks. Hence, these were used to determine anthocyanin content and stability based on the impacts of storage temperature. Melastoma malabathricum fruit pulp exhibited the highest anthocyanin content (8.43 mg/L) followed by H. rosa-sinensis and C. variegatum. Significantly greater stability of extracted anthocyanin pigment was shown when all three were stored at 4°C. The highest half-life periods for anthocyanin in M. malabathricum, H. rosa-sinensis, and C. variegatum were 541, 571, and 353 days at 4°C. These were rapidly decreased to 111, 220, and 254 days when stored at 25°C. The photovoltaic efficiency of M. malabathricum was1.16%, while the values for H. rosa-sinensis and C. variegatum were 0.16% and 1.08%, respectively. Hence, M. malabathricum fruit pulp extracts can be further evaluated as an alternative natural sensitizer for DSSCs.
This study investigated the effects of ultraviolet-A (UV-A) and ultraviolet-C (UV-C) light on the mechanical properties in oyster mushrooms during the growth. Experiments were carried out with irradiation of the mushrooms with UV-A (365 nm) and UV-C (254 nm) light during growth. The exposure time ranged from 10 minutes to 60 minutes at intervals of 10 minutes and irradiation was done for three days. The samples for experimental studies were cut into cylindrical shapes of diameter 12.50 mm and thickness 3.00 mm. The storage modulus, loss modulus, and loss factor of the irradiated samples and control samples were determined for both UV bands and there was a significant difference between the storage modulus, loss modulus, and loss factor of the irradiated samples by both UV bands with reference to the control sample, P < 0.05. UV-C light irradiated samples had higher loss modulus and loss factor but low storage modulus as temperature increased from 35 to 100°C with respect to the control sample while UV-A light irradiated samples had lower loss modulus, low loss factor, and higher storage modulus than UV-C irradiated samples.
The response of the calmodulin (CaM) protein as a function of calcium ion removal, ionic strength, and temperature at physiological pH condition was investigated using classical molecular dynamics simulations. Changing the ionic strength and temperature came out to be two of the possible routes for observing a conformation change in the protein. This behavior is similar to the conformation change observed in our previous study where a change in the pH was observed to trigger a conformation change in this protein. In the present study, as the calcium ions are removed from the protein, the protein is observed to acquire more flexibility. This flexibility is observed to be more prominent at a higher ionic strength. At a lower ionic strength of 150 mM with all the four calcium ions intact, the N- and C-lobes are observed to come close to a distance of 30 Å starting from an initial separation distance of 48 Å. This conformation change is observed to take place around 50 ns in a simulation of 100 ns. As a second parameter, temperature is observed to play a key role in the conformation change of the protein. With an increase in the temperature, the protein is observed to acquire a more compact form with the formation of different salt bridges between the residues of the N- and the C-lobes. The salt bridge formation leads to an overall lowering of the energy of the protein thus favoring the bending of the two lobes towards each other. The improper and dihedral terms show a significant shift thus leading to a more compact form on increasing the temperature. Another set of simulations is also performed at an increased temperature of 500 K to verify the reproducibility of the results. Thus a set of three possible alterations in the environmental conditions of the protein CaM are studied, with two of them giving rise to a conformation change and one adding flexibility to the protein.