{"title":"一类神经网络的稳定性与收敛性分析。","authors":"Xingbao Gao, Li-Zhi Liao","doi":"10.1109/TNN.2011.2167760","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 11","pages":"1770-82"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2167760","citationCount":"2","resultStr":"{\"title\":\"Stability and convergence analysis for a class of neural networks.\",\"authors\":\"Xingbao Gao, Li-Zhi Liao\",\"doi\":\"10.1109/TNN.2011.2167760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 11\",\"pages\":\"1770-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2167760\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2167760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2167760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Stability and convergence analysis for a class of neural networks.
In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.