{"title":"具有循环约束学习的Jordan网络鲁棒初始化。","authors":"Qing Song","doi":"10.1109/TNN.2011.2168423","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a robust initialization of a Jordan network with a recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of the Jordan network with a recurrent sensitivity and weight convergence analysis, which is used to obtain a tradeoff between the training and testing errors. In addition to using classical techniques for the adaptive learning rate and the adaptive dead zone, RIJNRCL employs a recurrent constrained parameter matrix to switch off excessive contributions from the hidden layer neurons based on weight convergence and stability conditions of the multilayered RNNs. It is well known that a good response from the hidden layer neurons and proper initialization play a dominant role in avoiding local minima in multilayered RNNs. The new RIJNRCL algorithm solves the twin problems of weight initialization and selection of the hidden layer neurons via a novel recurrent sensitivity ratio analysis. We provide the detailed steps for using RIJNRCL in a few benchmark time-series prediction problems and show that the proposed algorithm achieves superior generalization performance.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2460-73"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2168423","citationCount":"16","resultStr":"{\"title\":\"Robust initialization of a Jordan network with recurrent constrained learning.\",\"authors\":\"Qing Song\",\"doi\":\"10.1109/TNN.2011.2168423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a robust initialization of a Jordan network with a recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of the Jordan network with a recurrent sensitivity and weight convergence analysis, which is used to obtain a tradeoff between the training and testing errors. In addition to using classical techniques for the adaptive learning rate and the adaptive dead zone, RIJNRCL employs a recurrent constrained parameter matrix to switch off excessive contributions from the hidden layer neurons based on weight convergence and stability conditions of the multilayered RNNs. It is well known that a good response from the hidden layer neurons and proper initialization play a dominant role in avoiding local minima in multilayered RNNs. The new RIJNRCL algorithm solves the twin problems of weight initialization and selection of the hidden layer neurons via a novel recurrent sensitivity ratio analysis. We provide the detailed steps for using RIJNRCL in a few benchmark time-series prediction problems and show that the proposed algorithm achieves superior generalization performance.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2460-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2168423\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2168423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2168423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Robust initialization of a Jordan network with recurrent constrained learning.
In this paper, we propose a robust initialization of a Jordan network with a recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of the Jordan network with a recurrent sensitivity and weight convergence analysis, which is used to obtain a tradeoff between the training and testing errors. In addition to using classical techniques for the adaptive learning rate and the adaptive dead zone, RIJNRCL employs a recurrent constrained parameter matrix to switch off excessive contributions from the hidden layer neurons based on weight convergence and stability conditions of the multilayered RNNs. It is well known that a good response from the hidden layer neurons and proper initialization play a dominant role in avoiding local minima in multilayered RNNs. The new RIJNRCL algorithm solves the twin problems of weight initialization and selection of the hidden layer neurons via a novel recurrent sensitivity ratio analysis. We provide the detailed steps for using RIJNRCL in a few benchmark time-series prediction problems and show that the proposed algorithm achieves superior generalization performance.