苦瓜抗糖尿病作用的药物化学:有效成分和作用方式。

Q2 Pharmacology, Toxicology and Pharmaceutics Open Medicinal Chemistry Journal Pub Date : 2011-01-01 Epub Date: 2011-09-09 DOI:10.2174/1874104501105010070
Jaipaul Singh, Emmanuel Cumming, Gunasekar Manoharan, Huba Kalasz, Ernest Adeghate
{"title":"苦瓜抗糖尿病作用的药物化学:有效成分和作用方式。","authors":"Jaipaul Singh,&nbsp;Emmanuel Cumming,&nbsp;Gunasekar Manoharan,&nbsp;Huba Kalasz,&nbsp;Ernest Adeghate","doi":"10.2174/1874104501105010070","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is one of the oldest known human disease currently affecting more than 200 million people worldwide. Diabetes mellitus is derived from two Greek words meaning siphon and sugar. In DM, patients have high blood level of glucose and this passes out with urine. This is because the endocrine pancreas does not produce either or not enough insulin or the insulin which is produced is not exerting its biochemical effect (or insulin resistance) effectively. Insulin is a major metabolic hormone which has numerous functions in the body and one main role is to stimulate glucose uptake into body's cells where it is utilized to provide energy. The disease is classified into type 1 and type 2 DM. Type 1 DM develops when the insulin producing β cells have been destroyed and are unable to produce insulin. This is very common in children and is treated with insulin. Type 2 DM (T2DM) develops when the body is unable to produce an adequate amount of insulin or the insulin which is provided does not work efficiently. This is due to life style habits including unhealthy diet, obesity, lack of exercise and hereditary and environmental factors. Some symptoms of DM include excess urination, constant thirst, lethargy, weight loss, itching, decreased digestive enzyme secretion, slow wound healing and other related symptoms. If left untreated, DM can result in severe long-term complications such as kidney and heart failure, stroke, blindness, nerve damage, exocrine glands insufficiency and other forms of complications. T2DM can be treated and controlled by prescribed drugs, regular exercise, diet (including some plant-based food) and general change in life style habits. This review is concerned with the role of plant-based medicine to treat DM. One such plant is Momordica charantia which is grown in tropical countries worldwide and it has been used as a traditional herbal medicine for thousands of years although its origin in unknown. This review examines the medicinal chemistry and use(s) of M. charantia and its various extracts and compounds, their biochemical properties and how they act as anti-diabetic (hypoglycemic) drugs and the various mechanisms by which they exert their beneficial effects in controlling and treating DM.</p>","PeriodicalId":39133,"journal":{"name":"Open Medicinal Chemistry Journal","volume":"5 Suppl 2","pages":"70-7"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874104501105010070","citationCount":"134","resultStr":"{\"title\":\"Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions.\",\"authors\":\"Jaipaul Singh,&nbsp;Emmanuel Cumming,&nbsp;Gunasekar Manoharan,&nbsp;Huba Kalasz,&nbsp;Ernest Adeghate\",\"doi\":\"10.2174/1874104501105010070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is one of the oldest known human disease currently affecting more than 200 million people worldwide. Diabetes mellitus is derived from two Greek words meaning siphon and sugar. In DM, patients have high blood level of glucose and this passes out with urine. This is because the endocrine pancreas does not produce either or not enough insulin or the insulin which is produced is not exerting its biochemical effect (or insulin resistance) effectively. Insulin is a major metabolic hormone which has numerous functions in the body and one main role is to stimulate glucose uptake into body's cells where it is utilized to provide energy. The disease is classified into type 1 and type 2 DM. Type 1 DM develops when the insulin producing β cells have been destroyed and are unable to produce insulin. This is very common in children and is treated with insulin. Type 2 DM (T2DM) develops when the body is unable to produce an adequate amount of insulin or the insulin which is provided does not work efficiently. This is due to life style habits including unhealthy diet, obesity, lack of exercise and hereditary and environmental factors. Some symptoms of DM include excess urination, constant thirst, lethargy, weight loss, itching, decreased digestive enzyme secretion, slow wound healing and other related symptoms. If left untreated, DM can result in severe long-term complications such as kidney and heart failure, stroke, blindness, nerve damage, exocrine glands insufficiency and other forms of complications. T2DM can be treated and controlled by prescribed drugs, regular exercise, diet (including some plant-based food) and general change in life style habits. This review is concerned with the role of plant-based medicine to treat DM. One such plant is Momordica charantia which is grown in tropical countries worldwide and it has been used as a traditional herbal medicine for thousands of years although its origin in unknown. This review examines the medicinal chemistry and use(s) of M. charantia and its various extracts and compounds, their biochemical properties and how they act as anti-diabetic (hypoglycemic) drugs and the various mechanisms by which they exert their beneficial effects in controlling and treating DM.</p>\",\"PeriodicalId\":39133,\"journal\":{\"name\":\"Open Medicinal Chemistry Journal\",\"volume\":\"5 Suppl 2\",\"pages\":\"70-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1874104501105010070\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Medicinal Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874104501105010070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicinal Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874104501105010070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 134

摘要

糖尿病(DM)是已知的最古老的人类疾病之一,目前影响着全世界2亿多人。糖尿病这个词来源于两个希腊单词,意思是虹吸和糖。糖尿病患者血糖水平高,随尿液排出。这是因为内分泌胰腺没有产生或没有产生足够的胰岛素,或者产生的胰岛素没有有效地发挥其生化作用(或胰岛素抵抗)。胰岛素是一种主要的代谢激素,在体内有许多功能,其中一个主要作用是刺激葡萄糖被吸收到身体细胞中,在那里它被用来提供能量。糖尿病分为1型和2型糖尿病。1型糖尿病发生时,产生胰岛素的β细胞被破坏,无法产生胰岛素。这在儿童中很常见,可以用胰岛素治疗。当身体不能产生足够数量的胰岛素或胰岛素不能有效工作时,2型糖尿病(T2DM)就会发展。这是由于生活方式习惯,包括不健康的饮食、肥胖、缺乏锻炼以及遗传和环境因素。糖尿病的一些症状包括排尿过多、持续口渴、嗜睡、体重减轻、瘙痒、消化酶分泌减少、伤口愈合缓慢等相关症状。如果不及时治疗,糖尿病会导致严重的长期并发症,如肾衰竭和心力衰竭、中风、失明、神经损伤、外分泌腺功能不全和其他形式的并发症。T2DM可以通过处方药、定期运动、饮食(包括一些植物性食物)和改变生活方式习惯来治疗和控制。这篇综述是关于植物性药物治疗糖尿病的作用。其中一种植物是苦瓜,它生长在世界各地的热带国家,尽管它的起源未知,但它作为一种传统草药已经使用了数千年。本文综述了沙兰及其各种提取物和化合物的药物化学和用途、生化特性、抗糖尿病(降糖)药物的作用机制以及在控制和治疗糖尿病中发挥有益作用的各种机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions.

Diabetes mellitus (DM) is one of the oldest known human disease currently affecting more than 200 million people worldwide. Diabetes mellitus is derived from two Greek words meaning siphon and sugar. In DM, patients have high blood level of glucose and this passes out with urine. This is because the endocrine pancreas does not produce either or not enough insulin or the insulin which is produced is not exerting its biochemical effect (or insulin resistance) effectively. Insulin is a major metabolic hormone which has numerous functions in the body and one main role is to stimulate glucose uptake into body's cells where it is utilized to provide energy. The disease is classified into type 1 and type 2 DM. Type 1 DM develops when the insulin producing β cells have been destroyed and are unable to produce insulin. This is very common in children and is treated with insulin. Type 2 DM (T2DM) develops when the body is unable to produce an adequate amount of insulin or the insulin which is provided does not work efficiently. This is due to life style habits including unhealthy diet, obesity, lack of exercise and hereditary and environmental factors. Some symptoms of DM include excess urination, constant thirst, lethargy, weight loss, itching, decreased digestive enzyme secretion, slow wound healing and other related symptoms. If left untreated, DM can result in severe long-term complications such as kidney and heart failure, stroke, blindness, nerve damage, exocrine glands insufficiency and other forms of complications. T2DM can be treated and controlled by prescribed drugs, regular exercise, diet (including some plant-based food) and general change in life style habits. This review is concerned with the role of plant-based medicine to treat DM. One such plant is Momordica charantia which is grown in tropical countries worldwide and it has been used as a traditional herbal medicine for thousands of years although its origin in unknown. This review examines the medicinal chemistry and use(s) of M. charantia and its various extracts and compounds, their biochemical properties and how they act as anti-diabetic (hypoglycemic) drugs and the various mechanisms by which they exert their beneficial effects in controlling and treating DM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Medicinal Chemistry Journal
Open Medicinal Chemistry Journal Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.40
自引率
0.00%
发文量
4
期刊最新文献
Electrocoagulation for the Removal of Copper and Zinc Ions from Water Using Iron Electrodes Synthesis, Characterization and Antifungal Assessment of Optically Active Bis-organotin Compounds Derived from (S)-BINOL Diesters Functional Molecular Materials Iron(II) Spin Crossover Polymers of Planar N2O2 Schiff Base Templates and 4,4’-bis(pyridyl)urea Bridges Synthesis, Characterization of Mixed Cu(II) Pyridyl Tetrazoles and 1,10-Phenanthroline Complexes - DFT and Biological Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1