外差调幅和外差调频模式下的光致力显微镜纳米光学成像

Junsuke Yamanishi , Yan Jun Li , Yoshitaka Naitoh , Yasuhiro Sugawara
{"title":"外差调幅和外差调频模式下的光致力显微镜纳米光学成像","authors":"Junsuke Yamanishi ,&nbsp;Yan Jun Li ,&nbsp;Yoshitaka Naitoh ,&nbsp;Yasuhiro Sugawara","doi":"10.1016/j.jphotochemrev.2022.100532","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, we introduce the operating principle of photoinduced force microscopy<span> (PiFM) and its applications. First, we introduce that the photoinduced force includes the gradient force and the scattering force. Next, we explain how to eliminate the effects of photothermal effects on the metal tip and sample surface caused by light irradiation<span>. Then, we introduce a PiFM operating in air based on the tapping mode and present images of SiNc clusters. Furthermore, we introduce a PiFM operating in vacuum based on the frequency modulation (FM) mode, and present the results of three-dimensional photo-induced force vector measurements of semiconductor quantum dots.</span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"52 ","pages":"Article 100532"},"PeriodicalIF":12.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nanoscale optical imaging with photoinduced force microscopy in heterodyne amplitude modulation and heterodyne frequency modulation modes\",\"authors\":\"Junsuke Yamanishi ,&nbsp;Yan Jun Li ,&nbsp;Yoshitaka Naitoh ,&nbsp;Yasuhiro Sugawara\",\"doi\":\"10.1016/j.jphotochemrev.2022.100532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this review, we introduce the operating principle of photoinduced force microscopy<span> (PiFM) and its applications. First, we introduce that the photoinduced force includes the gradient force and the scattering force. Next, we explain how to eliminate the effects of photothermal effects on the metal tip and sample surface caused by light irradiation<span>. Then, we introduce a PiFM operating in air based on the tapping mode and present images of SiNc clusters. Furthermore, we introduce a PiFM operating in vacuum based on the frequency modulation (FM) mode, and present the results of three-dimensional photo-induced force vector measurements of semiconductor quantum dots.</span></span></p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"52 \",\"pages\":\"Article 100532\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138955672200051X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138955672200051X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了光致力显微镜(PiFM)的工作原理及其应用。首先,我们介绍了光致力包括梯度力和散射力。接下来,我们解释了如何消除光照射对金属尖端和样品表面的光热效应的影响。然后,我们介绍了一种基于自攻模式的PiFM,并给出了SiNc簇的当前图像。此外,我们还介绍了一种基于调频(FM)模式的真空PiFM,并给出了半导体量子点的三维光致力矢量测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoscale optical imaging with photoinduced force microscopy in heterodyne amplitude modulation and heterodyne frequency modulation modes

In this review, we introduce the operating principle of photoinduced force microscopy (PiFM) and its applications. First, we introduce that the photoinduced force includes the gradient force and the scattering force. Next, we explain how to eliminate the effects of photothermal effects on the metal tip and sample surface caused by light irradiation. Then, we introduce a PiFM operating in air based on the tapping mode and present images of SiNc clusters. Furthermore, we introduce a PiFM operating in vacuum based on the frequency modulation (FM) mode, and present the results of three-dimensional photo-induced force vector measurements of semiconductor quantum dots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs Boron doped nanomaterials for photocatalysis Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1