用于研究药物对实体肿瘤的影响的基于系统的数学建模框架。

Cong Liu, J Krishnan, Xiao Yun Xu
{"title":"用于研究药物对实体肿瘤的影响的基于系统的数学建模框架。","authors":"Cong Liu,&nbsp;J Krishnan,&nbsp;Xiao Yun Xu","doi":"10.1186/1742-4682-8-45","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Elucidating the effects of drugs on solid tumours is a highly challenging multi-level problem, since this involves many complexities associated with transport and cellular response, which in turn is characterized by highly non-linear chemical signal transduction. Appropriate systems frameworks are needed to seriously address the sources of these complexities, especially from the cellular side.</p><p><strong>Results: </strong>We develop a skeletal modelling framework incorporating interstitial drug transport, intracellular signal processing and cell population descriptions. The descriptions aim to appropriately capture the nature of information flow. The model is deliberately formulated to start with simple intracellular descriptions so that additional features can be incorporated in a modular fashion. Two kinds of intracellular signalling modules which describe the drug effect were considered, one a monostable switch and the other a bistable switch. Analysis of our model revealed how different drug stimuli can lead to cell killing in the tumour. Interestingly both modules considered exhibited similar trends. The effects of important parameters were also studied.</p><p><strong>Conclusions: </strong>We have created a predictive systems platform integrating drug transport and cellular response which can be systematically augmented to include additional layers of cellular complexity. Our results indicate that intracellular signalling models which are qualitatively different can give rise to similar behaviour to simple (and typical) stimuli, and that validating intracellular descriptions must be performed with care by considering a variety of drug stimuli.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":" ","pages":"45"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-4682-8-45","citationCount":"12","resultStr":"{\"title\":\"A systems-based mathematical modelling framework for investigating the effect of drugs on solid tumours.\",\"authors\":\"Cong Liu,&nbsp;J Krishnan,&nbsp;Xiao Yun Xu\",\"doi\":\"10.1186/1742-4682-8-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Elucidating the effects of drugs on solid tumours is a highly challenging multi-level problem, since this involves many complexities associated with transport and cellular response, which in turn is characterized by highly non-linear chemical signal transduction. Appropriate systems frameworks are needed to seriously address the sources of these complexities, especially from the cellular side.</p><p><strong>Results: </strong>We develop a skeletal modelling framework incorporating interstitial drug transport, intracellular signal processing and cell population descriptions. The descriptions aim to appropriately capture the nature of information flow. The model is deliberately formulated to start with simple intracellular descriptions so that additional features can be incorporated in a modular fashion. Two kinds of intracellular signalling modules which describe the drug effect were considered, one a monostable switch and the other a bistable switch. Analysis of our model revealed how different drug stimuli can lead to cell killing in the tumour. Interestingly both modules considered exhibited similar trends. The effects of important parameters were also studied.</p><p><strong>Conclusions: </strong>We have created a predictive systems platform integrating drug transport and cellular response which can be systematically augmented to include additional layers of cellular complexity. Our results indicate that intracellular signalling models which are qualitatively different can give rise to similar behaviour to simple (and typical) stimuli, and that validating intracellular descriptions must be performed with care by considering a variety of drug stimuli.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":\" \",\"pages\":\"45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1742-4682-8-45\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-4682-8-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-4682-8-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

背景:阐明药物对实体肿瘤的作用是一个极具挑战性的多层次问题,因为这涉及到与转运和细胞反应相关的许多复杂性,而这些转运和细胞反应又以高度非线性的化学信号转导为特征。需要适当的系统框架来认真处理这些复杂性的来源,特别是从蜂窝方面。结果:我们开发了一个包含间质药物转运、细胞内信号处理和细胞群描述的骨骼模型框架。这些描述旨在恰当地捕捉信息流的本质。该模型经过精心设计,从简单的细胞内描述开始,以便可以以模块化的方式合并其他特征。考虑了描述药物作用的两种细胞内信号模块,一种是单稳态开关,另一种是双稳态开关。对我们模型的分析揭示了不同的药物刺激如何导致肿瘤中的细胞死亡。有趣的是,这两个模块都显示出类似的趋势。研究了重要参数的影响。结论:我们已经创建了一个整合药物转运和细胞反应的预测系统平台,可以系统地扩展到包括细胞复杂性的其他层。我们的研究结果表明,细胞内信号模型在质量上不同,可以产生与简单(和典型)刺激相似的行为,并且必须通过考虑各种药物刺激来验证细胞内描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systems-based mathematical modelling framework for investigating the effect of drugs on solid tumours.

Background: Elucidating the effects of drugs on solid tumours is a highly challenging multi-level problem, since this involves many complexities associated with transport and cellular response, which in turn is characterized by highly non-linear chemical signal transduction. Appropriate systems frameworks are needed to seriously address the sources of these complexities, especially from the cellular side.

Results: We develop a skeletal modelling framework incorporating interstitial drug transport, intracellular signal processing and cell population descriptions. The descriptions aim to appropriately capture the nature of information flow. The model is deliberately formulated to start with simple intracellular descriptions so that additional features can be incorporated in a modular fashion. Two kinds of intracellular signalling modules which describe the drug effect were considered, one a monostable switch and the other a bistable switch. Analysis of our model revealed how different drug stimuli can lead to cell killing in the tumour. Interestingly both modules considered exhibited similar trends. The effects of important parameters were also studied.

Conclusions: We have created a predictive systems platform integrating drug transport and cellular response which can be systematically augmented to include additional layers of cellular complexity. Our results indicate that intracellular signalling models which are qualitatively different can give rise to similar behaviour to simple (and typical) stimuli, and that validating intracellular descriptions must be performed with care by considering a variety of drug stimuli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Biology and Medical Modelling
Theoretical Biology and Medical Modelling MATHEMATICAL & COMPUTATIONAL BIOLOGY-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.
期刊最新文献
The impact of natural disasters on the spread of COVID-19: a geospatial, agent-based epidemiology model Correction to: Statistical field theory of the transmission of nerve impulses Method for generating multiple risky barcodes of complex diseases using ant colony algorithm The role of mobility and health disparities on the transmission dynamics of Tuberculosis Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1