具有展开子囊附属物的属划分中子囊壁、子囊和子囊孢子特征的形态学评价。

Ka-Lai Pang, Wai-Lun Chiang, Jen-Sheng Jheng
{"title":"具有展开子囊附属物的属划分中子囊壁、子囊和子囊孢子特征的形态学评价。","authors":"Ka-Lai Pang,&nbsp;Wai-Lun Chiang,&nbsp;Jen-Sheng Jheng","doi":"10.1007/978-3-642-23342-5_8","DOIUrl":null,"url":null,"abstract":"<p><p>In the Halosphaeriaceae, taxa with unfurling ascospore appendages and related species constitute 61 species (in 21 genera). Recent phylogenetic analyses of the rRNA genes have advanced our knowledge on the relationships between genera in the family, especially the group with unfurling ascospore appendages. However, many new genera resulting from these studies lack distinctive morphological characteristics from closely related taxa. In this chapter, peridial wall layers of the ascomata and morphology of asci and ascospores are re-examined to determine if these structures offer useful information for the delineation of genera. In particular, shape parameters (aspect ratio, convexity, elongation, shape factor, sphericity, area, perimeter, diameter max, diameter mean and diameter min) of ascospores were calculated to determine if these parameters can provide extra characters for the delineation of taxa. Results suggest that peridial wall structure alone is insufficient to separate genera in the Halosphaeriaceae. Shape parameters of ascospores can provide additional characters but more taxa are required to test their efficacy. Ascus shape and length of stalk are further characters that should be calculated for taxonomical consideration. Morphology of the ascomatal wall and shape of asci and ascospores in genera with unfurling ascospore appendages in the Halosphaeriaceae are partially concordant with their phylogeny, suggesting a more thorough examination of these characters for the delineation of taxa in the family.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-23342-5_8","citationCount":"2","resultStr":"{\"title\":\"Morphological evaluation of peridial wall, ascus and ascospore characteristics in the delineation of genera with unfurling ascospore appendages (halosphaeriaceae).\",\"authors\":\"Ka-Lai Pang,&nbsp;Wai-Lun Chiang,&nbsp;Jen-Sheng Jheng\",\"doi\":\"10.1007/978-3-642-23342-5_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the Halosphaeriaceae, taxa with unfurling ascospore appendages and related species constitute 61 species (in 21 genera). Recent phylogenetic analyses of the rRNA genes have advanced our knowledge on the relationships between genera in the family, especially the group with unfurling ascospore appendages. However, many new genera resulting from these studies lack distinctive morphological characteristics from closely related taxa. In this chapter, peridial wall layers of the ascomata and morphology of asci and ascospores are re-examined to determine if these structures offer useful information for the delineation of genera. In particular, shape parameters (aspect ratio, convexity, elongation, shape factor, sphericity, area, perimeter, diameter max, diameter mean and diameter min) of ascospores were calculated to determine if these parameters can provide extra characters for the delineation of taxa. Results suggest that peridial wall structure alone is insufficient to separate genera in the Halosphaeriaceae. Shape parameters of ascospores can provide additional characters but more taxa are required to test their efficacy. Ascus shape and length of stalk are further characters that should be calculated for taxonomical consideration. Morphology of the ascomatal wall and shape of asci and ascospores in genera with unfurling ascospore appendages in the Halosphaeriaceae are partially concordant with their phylogeny, suggesting a more thorough examination of these characters for the delineation of taxa in the family.</p>\",\"PeriodicalId\":20880,\"journal\":{\"name\":\"Progress in molecular and subcellular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-23342-5_8\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular and subcellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-23342-5_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-23342-5_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

在盐球菌科中,具有展开子囊附属物的分类群和近缘种共61种(隶属于21属)。最近对rRNA基因的系统发育分析提高了我们对科中属之间关系的认识,特别是具有展开的子囊孢子附属物的组。然而,这些研究产生的许多新属缺乏与密切相关的分类群不同的形态特征。在本章中,我们重新检查了子囊的外壁层以及子囊和子囊孢子的形态,以确定这些结构是否为属的划分提供了有用的信息。特别是计算子囊孢子的形状参数(长宽比、凸度、伸长、形状因子、球形度、面积、周长、最大直径、平均直径和最小直径),以确定这些参数是否能为分类群的划分提供额外的特征。结果表明,单靠外壁结构不足以区分盐球菜科植物的属。子囊孢子的形状参数可以提供额外的特征,但需要更多的分类群来测试其功效。子囊的形状和茎的长度是进一步的特征,应计算为分类考虑。在有展开的子囊孢子附属物属中,子囊囊壁的形态和子囊孢子的形状与它们的系统发育是部分一致的,这表明在这个科的分类群的划分中需要对这些特征进行更彻底的检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological evaluation of peridial wall, ascus and ascospore characteristics in the delineation of genera with unfurling ascospore appendages (halosphaeriaceae).

In the Halosphaeriaceae, taxa with unfurling ascospore appendages and related species constitute 61 species (in 21 genera). Recent phylogenetic analyses of the rRNA genes have advanced our knowledge on the relationships between genera in the family, especially the group with unfurling ascospore appendages. However, many new genera resulting from these studies lack distinctive morphological characteristics from closely related taxa. In this chapter, peridial wall layers of the ascomata and morphology of asci and ascospores are re-examined to determine if these structures offer useful information for the delineation of genera. In particular, shape parameters (aspect ratio, convexity, elongation, shape factor, sphericity, area, perimeter, diameter max, diameter mean and diameter min) of ascospores were calculated to determine if these parameters can provide extra characters for the delineation of taxa. Results suggest that peridial wall structure alone is insufficient to separate genera in the Halosphaeriaceae. Shape parameters of ascospores can provide additional characters but more taxa are required to test their efficacy. Ascus shape and length of stalk are further characters that should be calculated for taxonomical consideration. Morphology of the ascomatal wall and shape of asci and ascospores in genera with unfurling ascospore appendages in the Halosphaeriaceae are partially concordant with their phylogeny, suggesting a more thorough examination of these characters for the delineation of taxa in the family.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
期刊最新文献
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1