Katsuko Tani, Mitsuo Tagaya, Shusuke Yonekawa, Takashi Baba
{"title":"Sec16B的双重功能:哺乳动物细胞内质网源性蛋白分泌和过氧化物酶体的生物发生。","authors":"Katsuko Tani, Mitsuo Tagaya, Shusuke Yonekawa, Takashi Baba","doi":"10.4161/cl.1.4.18341","DOIUrl":null,"url":null,"abstract":"<p><p>The origin of peroxisomes has long been disputed. However, recent evidence suggests that peroxisomes can be formed de novo from the endoplasmic reticulum (ER) in yeast and higher eukaryotes. Sec16A and Sec16B, mammalian orthologs of yeast Sec16, are scaffold proteins that organize ER exit sites by interacting with COPII components. We recently demonstrated that Sec16B, but not Sec16A, regulates the transport of peroxisomal biogenesis factors from the ER to peroxisomes in mammalian cells. The C-terminal region of Sec16B, which is not conserved in Sec16A, is required for this function. The data suggest that Sec16B in ER areas other than ER exit sites plays this role. Our findings provide an unexpected connection between at least part of the COPII machinery and the formation of preperoxisomal vesicles at the ER, and offer an explanation of how secretory and peroxisomal trafficking from the ER are distinguished.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"1 4","pages":"164-167"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.1.4.18341","citationCount":"10","resultStr":"{\"title\":\"Dual function of Sec16B: Endoplasmic reticulum-derived protein secretion and peroxisome biogenesis in mammalian cells.\",\"authors\":\"Katsuko Tani, Mitsuo Tagaya, Shusuke Yonekawa, Takashi Baba\",\"doi\":\"10.4161/cl.1.4.18341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The origin of peroxisomes has long been disputed. However, recent evidence suggests that peroxisomes can be formed de novo from the endoplasmic reticulum (ER) in yeast and higher eukaryotes. Sec16A and Sec16B, mammalian orthologs of yeast Sec16, are scaffold proteins that organize ER exit sites by interacting with COPII components. We recently demonstrated that Sec16B, but not Sec16A, regulates the transport of peroxisomal biogenesis factors from the ER to peroxisomes in mammalian cells. The C-terminal region of Sec16B, which is not conserved in Sec16A, is required for this function. The data suggest that Sec16B in ER areas other than ER exit sites plays this role. Our findings provide an unexpected connection between at least part of the COPII machinery and the formation of preperoxisomal vesicles at the ER, and offer an explanation of how secretory and peroxisomal trafficking from the ER are distinguished.</p>\",\"PeriodicalId\":72547,\"journal\":{\"name\":\"Cellular logistics\",\"volume\":\"1 4\",\"pages\":\"164-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/cl.1.4.18341\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/cl.1.4.18341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/cl.1.4.18341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual function of Sec16B: Endoplasmic reticulum-derived protein secretion and peroxisome biogenesis in mammalian cells.
The origin of peroxisomes has long been disputed. However, recent evidence suggests that peroxisomes can be formed de novo from the endoplasmic reticulum (ER) in yeast and higher eukaryotes. Sec16A and Sec16B, mammalian orthologs of yeast Sec16, are scaffold proteins that organize ER exit sites by interacting with COPII components. We recently demonstrated that Sec16B, but not Sec16A, regulates the transport of peroxisomal biogenesis factors from the ER to peroxisomes in mammalian cells. The C-terminal region of Sec16B, which is not conserved in Sec16A, is required for this function. The data suggest that Sec16B in ER areas other than ER exit sites plays this role. Our findings provide an unexpected connection between at least part of the COPII machinery and the formation of preperoxisomal vesicles at the ER, and offer an explanation of how secretory and peroxisomal trafficking from the ER are distinguished.