{"title":"c肽与磷脂小束之间的ph依赖性相互作用。","authors":"Sofia Unnerståle, Lena Mäler","doi":"10.1155/2012/185907","DOIUrl":null,"url":null,"abstract":"<p><p>C-peptide is the connecting peptide between the A and B chains of insulin in proinsulin. In this paper, we investigate the interaction between C-peptide and phospholipid bicelles, by circular dichroism and nuclear magnetic resonance spectroscopy, and in particular the pH dependence of this interaction. The results demonstrate that C-peptide is largely unstructured independent of pH, but that a weak structural induction towards a short stretch of β-sheet is induced at low pH, corresponding to the isoelectric point of the peptide. Furthermore, it is demonstrated that C-peptide associates with neutral phospholipid bicelles as well as acidic phospholipid bicelles at this low pH. C-peptide does not undergo a large structural rearrangement as a consequence of lipid interaction, which indicates that the folding and binding are uncoupled. In vivo, local variations in environment, including pH, may cause C-peptide to associate with lipids, which may affect the aggregation state of the peptide.</p>","PeriodicalId":73623,"journal":{"name":"Journal of biophysics (Hindawi Publishing Corporation : Online)","volume":" ","pages":"185907"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/185907","citationCount":"10","resultStr":"{\"title\":\"pH-Dependent Interaction between C-Peptide and Phospholipid Bicelles.\",\"authors\":\"Sofia Unnerståle, Lena Mäler\",\"doi\":\"10.1155/2012/185907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>C-peptide is the connecting peptide between the A and B chains of insulin in proinsulin. In this paper, we investigate the interaction between C-peptide and phospholipid bicelles, by circular dichroism and nuclear magnetic resonance spectroscopy, and in particular the pH dependence of this interaction. The results demonstrate that C-peptide is largely unstructured independent of pH, but that a weak structural induction towards a short stretch of β-sheet is induced at low pH, corresponding to the isoelectric point of the peptide. Furthermore, it is demonstrated that C-peptide associates with neutral phospholipid bicelles as well as acidic phospholipid bicelles at this low pH. C-peptide does not undergo a large structural rearrangement as a consequence of lipid interaction, which indicates that the folding and binding are uncoupled. In vivo, local variations in environment, including pH, may cause C-peptide to associate with lipids, which may affect the aggregation state of the peptide.</p>\",\"PeriodicalId\":73623,\"journal\":{\"name\":\"Journal of biophysics (Hindawi Publishing Corporation : Online)\",\"volume\":\" \",\"pages\":\"185907\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/185907\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophysics (Hindawi Publishing Corporation : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/185907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophysics (Hindawi Publishing Corporation : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/185907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
pH-Dependent Interaction between C-Peptide and Phospholipid Bicelles.
C-peptide is the connecting peptide between the A and B chains of insulin in proinsulin. In this paper, we investigate the interaction between C-peptide and phospholipid bicelles, by circular dichroism and nuclear magnetic resonance spectroscopy, and in particular the pH dependence of this interaction. The results demonstrate that C-peptide is largely unstructured independent of pH, but that a weak structural induction towards a short stretch of β-sheet is induced at low pH, corresponding to the isoelectric point of the peptide. Furthermore, it is demonstrated that C-peptide associates with neutral phospholipid bicelles as well as acidic phospholipid bicelles at this low pH. C-peptide does not undergo a large structural rearrangement as a consequence of lipid interaction, which indicates that the folding and binding are uncoupled. In vivo, local variations in environment, including pH, may cause C-peptide to associate with lipids, which may affect the aggregation state of the peptide.