星形胶质细胞产生的ATP调节小鸡的记忆。

Neuron glia biology Pub Date : 2011-05-01 Epub Date: 2012-07-06 DOI:10.1017/S1740925X12000117
Marie E Gibbs, Maria Shleper, Tomris Mustafa, Geoffrey Burnstock, David N Bowser
{"title":"星形胶质细胞产生的ATP调节小鸡的记忆。","authors":"Marie E Gibbs,&nbsp;Maria Shleper,&nbsp;Tomris Mustafa,&nbsp;Geoffrey Burnstock,&nbsp;David N Bowser","doi":"10.1017/S1740925X12000117","DOIUrl":null,"url":null,"abstract":"<p><p>Memory consolidation in a discriminative bead pecking task is modulated by endogenous adenosine triphosphate (ATP) acting at purinergic receptors in the hippocampus. Consolidation, from short- to intermediate- to long-term memory during two distinct periods following training, was blocked by the non-selective P2 purinergic receptor antagonist PPADS (pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) tetrasodium salt hydrate and the specific P2Y1 receptor antagonist MRS2179. Direct injections of the ATP agonists (ATPγS and ADPβS) potentiated memory consolidation and the effect of ADPβS was blocked by MRS2179, suggesting an important role of ATP on memory consolidation via the P2Y1 receptor in the chick hippocampus. Incubation of astrocytes with ATPγS and ADPβS resulted in the increase of intracellular calcium ([Ca2+]i), the latter being blocked by MRS2179 suggesting a specific role for P2Y1 receptors in the calcium response. This response was prevented by blocking astrocytic oxidative metabolism with fluoroacetate. We argue that the source of the ATP acting on neuronal P2Y1 receptors is most likely to be astrocytes. Thrombin selectively increases [Ca2+]i in astrocytes but not in neurones. The main findings of the present study are: (a) astrocytic [Ca2+]i plays an important role in the consolidation of short-term to long-term memory; and (b) ATP released from chick astrocytes during learning modulates neuronal activity through astrocytic P2Y1 receptors.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1740925X12000117","citationCount":"18","resultStr":"{\"title\":\"ATP derived from astrocytes modulates memory in the chick.\",\"authors\":\"Marie E Gibbs,&nbsp;Maria Shleper,&nbsp;Tomris Mustafa,&nbsp;Geoffrey Burnstock,&nbsp;David N Bowser\",\"doi\":\"10.1017/S1740925X12000117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Memory consolidation in a discriminative bead pecking task is modulated by endogenous adenosine triphosphate (ATP) acting at purinergic receptors in the hippocampus. Consolidation, from short- to intermediate- to long-term memory during two distinct periods following training, was blocked by the non-selective P2 purinergic receptor antagonist PPADS (pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) tetrasodium salt hydrate and the specific P2Y1 receptor antagonist MRS2179. Direct injections of the ATP agonists (ATPγS and ADPβS) potentiated memory consolidation and the effect of ADPβS was blocked by MRS2179, suggesting an important role of ATP on memory consolidation via the P2Y1 receptor in the chick hippocampus. Incubation of astrocytes with ATPγS and ADPβS resulted in the increase of intracellular calcium ([Ca2+]i), the latter being blocked by MRS2179 suggesting a specific role for P2Y1 receptors in the calcium response. This response was prevented by blocking astrocytic oxidative metabolism with fluoroacetate. We argue that the source of the ATP acting on neuronal P2Y1 receptors is most likely to be astrocytes. Thrombin selectively increases [Ca2+]i in astrocytes but not in neurones. The main findings of the present study are: (a) astrocytic [Ca2+]i plays an important role in the consolidation of short-term to long-term memory; and (b) ATP released from chick astrocytes during learning modulates neuronal activity through astrocytic P2Y1 receptors.</p>\",\"PeriodicalId\":19153,\"journal\":{\"name\":\"Neuron glia biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1740925X12000117\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron glia biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1740925X12000117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X12000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

辨别性啄头任务中的记忆巩固是由内源性三磷酸腺苷(ATP)作用于海马嘌呤能受体调节的。非选择性P2嘌呤能受体拮抗剂PPADS (pyridoxal phosphate-6-偶氮(苯-2,4-二磺酸)四钠盐水合物)和特异性P2Y1受体拮抗剂MRS2179阻断了训练后两个不同时期从短期到中期到长期的记忆巩固。直接注射ATP激动剂(ATPγ s和ADPβS)可增强记忆巩固,而MRS2179可阻断ADPβS的作用,提示ATP在鸡海马中通过P2Y1受体参与记忆巩固的重要作用。与ATPγS和ADPβS孵育星形胶质细胞导致细胞内钙([Ca2+]i)增加,后者被MRS2179阻断,提示P2Y1受体在钙反应中的特定作用。这种反应可以通过氟乙酸阻断星形细胞氧化代谢来阻止。我们认为作用于神经元P2Y1受体的ATP的来源很可能是星形胶质细胞。凝血酶选择性地增加星形胶质细胞中的[Ca2+]i,但在神经元中没有。本研究的主要发现是:(a)星形胶质细胞[Ca2+]i在短期到长期记忆的巩固中起重要作用;(b)鸡星形胶质细胞在学习过程中释放的ATP通过星形胶质细胞P2Y1受体调节神经元活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATP derived from astrocytes modulates memory in the chick.

Memory consolidation in a discriminative bead pecking task is modulated by endogenous adenosine triphosphate (ATP) acting at purinergic receptors in the hippocampus. Consolidation, from short- to intermediate- to long-term memory during two distinct periods following training, was blocked by the non-selective P2 purinergic receptor antagonist PPADS (pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) tetrasodium salt hydrate and the specific P2Y1 receptor antagonist MRS2179. Direct injections of the ATP agonists (ATPγS and ADPβS) potentiated memory consolidation and the effect of ADPβS was blocked by MRS2179, suggesting an important role of ATP on memory consolidation via the P2Y1 receptor in the chick hippocampus. Incubation of astrocytes with ATPγS and ADPβS resulted in the increase of intracellular calcium ([Ca2+]i), the latter being blocked by MRS2179 suggesting a specific role for P2Y1 receptors in the calcium response. This response was prevented by blocking astrocytic oxidative metabolism with fluoroacetate. We argue that the source of the ATP acting on neuronal P2Y1 receptors is most likely to be astrocytes. Thrombin selectively increases [Ca2+]i in astrocytes but not in neurones. The main findings of the present study are: (a) astrocytic [Ca2+]i plays an important role in the consolidation of short-term to long-term memory; and (b) ATP released from chick astrocytes during learning modulates neuronal activity through astrocytic P2Y1 receptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron glia biology
Neuron glia biology 医学-神经科学
自引率
0.00%
发文量
0
期刊最新文献
Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain. The effects of L-NAME on neuronal NOS and SOD1 expression in the DRG-spinal cord network of axotomised Thy 1.2 eGFP mice. Exposure to environmental enrichment prior to a cerebral cortex stab wound attenuates the postlesional astroglia response in rats. Evidence of microglial activation in autism and its possible role in brain underconnectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1