{"title":"应变诱导结晶聚合物的多尺度结构演化:从基础研究到最新进展","authors":"Shanshan Xu , Jian Zhou , Pengju Pan","doi":"10.1016/j.progpolymsci.2023.101676","DOIUrl":null,"url":null,"abstract":"<div><p>Semicrystalline polymers products usually adopt a crystallized form in their end-use environment. These crystallized polymers undergo various deformations under different external fields (<em>e.g.</em><span>, stretching) from precursor processing, post treatment to final shape formation. Such deformation process is accompanied by multi-scale and multi-stage structural evolutions due to the complex hierarchical structures of crystallized polymers. These structural evolutions control over essential physical properties of semicrystalline polymers, which can be further developed towards high-performance industrial materials. A profound understanding of associated mechanisms is the critical key to interpret the complicated deformation process and to optimize the practical performances of polymer materials. The past reviews have more or less focused on one aspect of deformation while the multi-scale vision is lacking. Herein, this review brings a comprehensive presentation of strain-induced structural mechanics of crystallized polymers based on a multi-scale, multi-stage standpoint from the initiation of plasticity until failure. Important structural changes and associated mechanisms during the whole deformation process are systematically summarized, with particular attention paid to the crystal phase transition and crystal morphology evolution. Besides, the relationships between resulted microstructures and the essential end-use properties of crystallized polymers as well as their performances as common industrial materials are discussed. By summarizing the recent processes, this review is hoped to open up more aventunes for developing deformation-inspired sophisticated materials facing broader and interdisciplinary application fields.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"140 ","pages":"Article 101676"},"PeriodicalIF":26.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Strain-induced multiscale structural evolutions of crystallized polymers: From fundamental studies to recent progresses\",\"authors\":\"Shanshan Xu , Jian Zhou , Pengju Pan\",\"doi\":\"10.1016/j.progpolymsci.2023.101676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semicrystalline polymers products usually adopt a crystallized form in their end-use environment. These crystallized polymers undergo various deformations under different external fields (<em>e.g.</em><span>, stretching) from precursor processing, post treatment to final shape formation. Such deformation process is accompanied by multi-scale and multi-stage structural evolutions due to the complex hierarchical structures of crystallized polymers. These structural evolutions control over essential physical properties of semicrystalline polymers, which can be further developed towards high-performance industrial materials. A profound understanding of associated mechanisms is the critical key to interpret the complicated deformation process and to optimize the practical performances of polymer materials. The past reviews have more or less focused on one aspect of deformation while the multi-scale vision is lacking. Herein, this review brings a comprehensive presentation of strain-induced structural mechanics of crystallized polymers based on a multi-scale, multi-stage standpoint from the initiation of plasticity until failure. Important structural changes and associated mechanisms during the whole deformation process are systematically summarized, with particular attention paid to the crystal phase transition and crystal morphology evolution. Besides, the relationships between resulted microstructures and the essential end-use properties of crystallized polymers as well as their performances as common industrial materials are discussed. By summarizing the recent processes, this review is hoped to open up more aventunes for developing deformation-inspired sophisticated materials facing broader and interdisciplinary application fields.</span></p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"140 \",\"pages\":\"Article 101676\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007967002300031X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967002300031X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Strain-induced multiscale structural evolutions of crystallized polymers: From fundamental studies to recent progresses
Semicrystalline polymers products usually adopt a crystallized form in their end-use environment. These crystallized polymers undergo various deformations under different external fields (e.g., stretching) from precursor processing, post treatment to final shape formation. Such deformation process is accompanied by multi-scale and multi-stage structural evolutions due to the complex hierarchical structures of crystallized polymers. These structural evolutions control over essential physical properties of semicrystalline polymers, which can be further developed towards high-performance industrial materials. A profound understanding of associated mechanisms is the critical key to interpret the complicated deformation process and to optimize the practical performances of polymer materials. The past reviews have more or less focused on one aspect of deformation while the multi-scale vision is lacking. Herein, this review brings a comprehensive presentation of strain-induced structural mechanics of crystallized polymers based on a multi-scale, multi-stage standpoint from the initiation of plasticity until failure. Important structural changes and associated mechanisms during the whole deformation process are systematically summarized, with particular attention paid to the crystal phase transition and crystal morphology evolution. Besides, the relationships between resulted microstructures and the essential end-use properties of crystallized polymers as well as their performances as common industrial materials are discussed. By summarizing the recent processes, this review is hoped to open up more aventunes for developing deformation-inspired sophisticated materials facing broader and interdisciplinary application fields.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.