基于细胞的GTPase激活和调控试验的优点和局限性。

James E Casanova
{"title":"基于细胞的GTPase激活和调控试验的优点和局限性。","authors":"James E Casanova","doi":"10.4161/cl.22045","DOIUrl":null,"url":null,"abstract":"<p><p>Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being \"on\" in the active, GTP-bound state and \"off\" in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"2 3","pages":"147-150"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.22045","citationCount":"3","resultStr":"{\"title\":\"Advantages and limitations of cell-based assays for GTPase activation and regulation.\",\"authors\":\"James E Casanova\",\"doi\":\"10.4161/cl.22045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being \\\"on\\\" in the active, GTP-bound state and \\\"off\\\" in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems.</p>\",\"PeriodicalId\":72547,\"journal\":{\"name\":\"Cellular logistics\",\"volume\":\"2 3\",\"pages\":\"147-150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/cl.22045\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/cl.22045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/cl.22045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Ras超家族的小gtpase是许多细胞功能的重要调节因子,包括信号转导、细胞骨架组装、代谢调节、细胞器生物发生和细胞内运输。大多数gtpase充当二元开关,在活性的gtp结合状态下“开”,在非活性的gtp结合状态下“关”,并在辅助蛋白的帮助下在两种状态之间循环,这些辅助蛋白被称为鸟嘌呤核苷酸交换因子(gef)和gtpase激活蛋白(gap)。本文将重点介绍adp -核糖基化因子(Arfs),这是一个g蛋白家族,在囊泡运输过程中是载体囊泡形成的重要调节因子。对于大多数其他gtpase, Arfs本身的数量远远超过调节它们的蛋白质,该领域的一个主要焦点是在细胞水平上定义单个GEFs和gap及其底物之间的功能关系。多年来,已经开发了多种方法来测量GTPase在体外和体内的激活。体外分析将在Randazzo及其同事的文章中讨论。在这里,我们将重点关注基于细胞和组织的检测及其相对于无细胞系统的优点/缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advantages and limitations of cell-based assays for GTPase activation and regulation.

Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being "on" in the active, GTP-bound state and "off" in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vps34 and the Armus/TBC-2 Rab GAPs: Putting the brakes on the endosomal Rab5 and Rab7 GTPases. Integrative biological simulation praxis: Considerations from physics, philosophy, and data/model curation practices. Agents and networks to model the dynamic interactions of intracellular transport. How can biological modeling help cell biology? Amino acid and small GTPase regulation of mTORC1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1