Hyun-Su Lee, Michael Q Yee, Yonaton Y Eckmann, Noreen J Hickok, David M Eckmann, Russell J Composto
{"title":"壳聚糖和季铵改性壳聚糖刷层的可逆膨胀:pH 值及阴离子大小和功能性的影响","authors":"Hyun-Su Lee, Michael Q Yee, Yonaton Y Eckmann, Noreen J Hickok, David M Eckmann, Russell J Composto","doi":"10.1039/C2JM34316A","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the swelling of grafted polycationic brushes as a function of pH and anion type. The brushes are chitosan (CH) and chitosans with 27% and 51% degree of substitution (DS) of quaternary ammonium salt, denoted as CH-Q(25) and CH-Q(50), respectively. The water content and swelling behaviors are monitored using in situ quartz-crystal microbalance with dissipation (QCM-D). The pH varies from ~3.5 to 8.5, and the counter anion types include chloride, acetate, and citrate. At fixed pH, the water content and brush swelling increase as the DS increases. Whereas the CH-Q(50) brush layer shows symmetric swelling with a minimum near pH = 4.5, the swelling of CH and CH-Q(25) is relatively constant as pH decreases from 8.2 to 5.5, and then begins to increase near pH 4. These studies indicate that the symmetric swelling of CH-Q(50) is likely attributed to increasing protonation of primary amines for pH values below pH 6.5 and the quaternary ammonium salts above pH 6.5. At pH 4, the swelling of the CH brush increases upon exchanging the smaller chloridewith a bulkier acetate anion, which is less effective at screening intra/inter molecular repulsion. In contrast, upon exchanging the acetate with trifunctional citrate, CH and CH-Q(25) brushes collapse by 53 and 42%, respectively, because the citrate forms ionic cross-links. To test antibacterial properties, silicon oxide, CH and CH-Q(50) brush layers are exposed to 10(7)-10(8) cfu/ml of S. aureus for two days at 37 °C and exposed to stepped shear stresses in 2 min intervals. Whereas an S. aureus biofilm adheres strongly to silicon oxide and CH for stresses up to 12 dyne/cm(2), biofilms on CH-Q(50) detach at a relatively low shear stress, 1.5 dyne/cm(2). Due to their high degree of swelling that can be tuned via pH, counterion size and type, chitosan and quaternary modified chitosans have potential as responsive coatings for applications including MEMS/NEMS devices and drug eluting implants.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 37","pages":"19605-19616"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510778/pdf/nihms404646.pdf","citationCount":"0","resultStr":"{\"title\":\"Reversible Swelling of Chitosan and Quaternary Ammonium Modified Chitosan Brush Layers: Effect of pH and Counter Anion Size and Functionality.\",\"authors\":\"Hyun-Su Lee, Michael Q Yee, Yonaton Y Eckmann, Noreen J Hickok, David M Eckmann, Russell J Composto\",\"doi\":\"10.1039/C2JM34316A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the swelling of grafted polycationic brushes as a function of pH and anion type. The brushes are chitosan (CH) and chitosans with 27% and 51% degree of substitution (DS) of quaternary ammonium salt, denoted as CH-Q(25) and CH-Q(50), respectively. The water content and swelling behaviors are monitored using in situ quartz-crystal microbalance with dissipation (QCM-D). The pH varies from ~3.5 to 8.5, and the counter anion types include chloride, acetate, and citrate. At fixed pH, the water content and brush swelling increase as the DS increases. Whereas the CH-Q(50) brush layer shows symmetric swelling with a minimum near pH = 4.5, the swelling of CH and CH-Q(25) is relatively constant as pH decreases from 8.2 to 5.5, and then begins to increase near pH 4. These studies indicate that the symmetric swelling of CH-Q(50) is likely attributed to increasing protonation of primary amines for pH values below pH 6.5 and the quaternary ammonium salts above pH 6.5. At pH 4, the swelling of the CH brush increases upon exchanging the smaller chloridewith a bulkier acetate anion, which is less effective at screening intra/inter molecular repulsion. In contrast, upon exchanging the acetate with trifunctional citrate, CH and CH-Q(25) brushes collapse by 53 and 42%, respectively, because the citrate forms ionic cross-links. To test antibacterial properties, silicon oxide, CH and CH-Q(50) brush layers are exposed to 10(7)-10(8) cfu/ml of S. aureus for two days at 37 °C and exposed to stepped shear stresses in 2 min intervals. Whereas an S. aureus biofilm adheres strongly to silicon oxide and CH for stresses up to 12 dyne/cm(2), biofilms on CH-Q(50) detach at a relatively low shear stress, 1.5 dyne/cm(2). Due to their high degree of swelling that can be tuned via pH, counterion size and type, chitosan and quaternary modified chitosans have potential as responsive coatings for applications including MEMS/NEMS devices and drug eluting implants.</p>\",\"PeriodicalId\":16297,\"journal\":{\"name\":\"Journal of Materials Chemistry\",\"volume\":\"22 37\",\"pages\":\"19605-19616\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510778/pdf/nihms404646.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/C2JM34316A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C2JM34316A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reversible Swelling of Chitosan and Quaternary Ammonium Modified Chitosan Brush Layers: Effect of pH and Counter Anion Size and Functionality.
This study investigates the swelling of grafted polycationic brushes as a function of pH and anion type. The brushes are chitosan (CH) and chitosans with 27% and 51% degree of substitution (DS) of quaternary ammonium salt, denoted as CH-Q(25) and CH-Q(50), respectively. The water content and swelling behaviors are monitored using in situ quartz-crystal microbalance with dissipation (QCM-D). The pH varies from ~3.5 to 8.5, and the counter anion types include chloride, acetate, and citrate. At fixed pH, the water content and brush swelling increase as the DS increases. Whereas the CH-Q(50) brush layer shows symmetric swelling with a minimum near pH = 4.5, the swelling of CH and CH-Q(25) is relatively constant as pH decreases from 8.2 to 5.5, and then begins to increase near pH 4. These studies indicate that the symmetric swelling of CH-Q(50) is likely attributed to increasing protonation of primary amines for pH values below pH 6.5 and the quaternary ammonium salts above pH 6.5. At pH 4, the swelling of the CH brush increases upon exchanging the smaller chloridewith a bulkier acetate anion, which is less effective at screening intra/inter molecular repulsion. In contrast, upon exchanging the acetate with trifunctional citrate, CH and CH-Q(25) brushes collapse by 53 and 42%, respectively, because the citrate forms ionic cross-links. To test antibacterial properties, silicon oxide, CH and CH-Q(50) brush layers are exposed to 10(7)-10(8) cfu/ml of S. aureus for two days at 37 °C and exposed to stepped shear stresses in 2 min intervals. Whereas an S. aureus biofilm adheres strongly to silicon oxide and CH for stresses up to 12 dyne/cm(2), biofilms on CH-Q(50) detach at a relatively low shear stress, 1.5 dyne/cm(2). Due to their high degree of swelling that can be tuned via pH, counterion size and type, chitosan and quaternary modified chitosans have potential as responsive coatings for applications including MEMS/NEMS devices and drug eluting implants.