{"title":"在射频场存在下重访同核自旋对的偶极弛豫:教程","authors":"Yuki Toyama , Lewis E. Kay","doi":"10.1016/j.jmro.2022.100065","DOIUrl":null,"url":null,"abstract":"<div><p>NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex, often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper we derive expressions for dipolar relaxation of an <em>I</em>-<em>S</em> two spin spin-system in the presence of a <em>B</em><sub>1</sub> radio frequency field, where spins <em>I</em> and <em>S</em> can be either like or unlike. We consider two different approaches for the derivation of relaxation elements that have been used in the literature, including one where a series of transformations are carried out to the interaction representation of the effective field, comprising <em>B</em><sub>1</sub> and Zeeman components. A second procedure is based on the well-known Solomon equations. We show that both approaches lead to identical results, in the process presenting a pedagogical description of relaxation theory.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"12 ","pages":"Article 100065"},"PeriodicalIF":2.6240,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting dipolar relaxation of a homonuclear spin pair in the presence of a radio frequency field: A tutorial\",\"authors\":\"Yuki Toyama , Lewis E. Kay\",\"doi\":\"10.1016/j.jmro.2022.100065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex, often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper we derive expressions for dipolar relaxation of an <em>I</em>-<em>S</em> two spin spin-system in the presence of a <em>B</em><sub>1</sub> radio frequency field, where spins <em>I</em> and <em>S</em> can be either like or unlike. We consider two different approaches for the derivation of relaxation elements that have been used in the literature, including one where a series of transformations are carried out to the interaction representation of the effective field, comprising <em>B</em><sub>1</sub> and Zeeman components. A second procedure is based on the well-known Solomon equations. We show that both approaches lead to identical results, in the process presenting a pedagogical description of relaxation theory.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"12 \",\"pages\":\"Article 100065\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441022000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441022000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting dipolar relaxation of a homonuclear spin pair in the presence of a radio frequency field: A tutorial
NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex, often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper we derive expressions for dipolar relaxation of an I-S two spin spin-system in the presence of a B1 radio frequency field, where spins I and S can be either like or unlike. We consider two different approaches for the derivation of relaxation elements that have been used in the literature, including one where a series of transformations are carried out to the interaction representation of the effective field, comprising B1 and Zeeman components. A second procedure is based on the well-known Solomon equations. We show that both approaches lead to identical results, in the process presenting a pedagogical description of relaxation theory.