{"title":"植物驯化和对食草动物的抵抗力。","authors":"Bhupendra Chaudhary","doi":"10.1155/2013/572784","DOIUrl":null,"url":null,"abstract":"<p><p>Transformation of wild species into elite cultivars through \"domestication\" entails evolutionary responses in which plant populations adapt to selection. Domestication is a process characterized by the occurrence of key mutations in morphological, phenological, or utility genes, which leads to the increased adaptation and use of the plant; however, this process followed by modern plant breeding practices has presumably narrowed the genetic diversity in crop plants. The reduction of genetic diversity could result in \"broad susceptibility\" to newly emerging herbivores and pathogens, thereby threatening long-term crop retention. Different QTLs influencing herbivore resistance have also been identified, which overlap with other genes of small effect regulating resistance indicating the presence of pleiotropism or linkage between such genes. However, this reduction in genetic variability could be remunerated by introgression of novel traits from wild perhaps with antifeedant and antinutritional toxic components. Thus it is strongly believed that transgenic technologies may provide a radical and promising solution to combat herbivory as these avoid linkage drag and also the antifeedant angle. Here, important questions related to the temporal dynamics of resistance to herbivory and intricate genetic phenomenon with their impact on crop evolution are addressed and at times hypothesized for future validation.</p>","PeriodicalId":73471,"journal":{"name":"International journal of plant genomics","volume":"2013 ","pages":"572784"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plant domestication and resistance to herbivory.\",\"authors\":\"Bhupendra Chaudhary\",\"doi\":\"10.1155/2013/572784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transformation of wild species into elite cultivars through \\\"domestication\\\" entails evolutionary responses in which plant populations adapt to selection. Domestication is a process characterized by the occurrence of key mutations in morphological, phenological, or utility genes, which leads to the increased adaptation and use of the plant; however, this process followed by modern plant breeding practices has presumably narrowed the genetic diversity in crop plants. The reduction of genetic diversity could result in \\\"broad susceptibility\\\" to newly emerging herbivores and pathogens, thereby threatening long-term crop retention. Different QTLs influencing herbivore resistance have also been identified, which overlap with other genes of small effect regulating resistance indicating the presence of pleiotropism or linkage between such genes. However, this reduction in genetic variability could be remunerated by introgression of novel traits from wild perhaps with antifeedant and antinutritional toxic components. Thus it is strongly believed that transgenic technologies may provide a radical and promising solution to combat herbivory as these avoid linkage drag and also the antifeedant angle. Here, important questions related to the temporal dynamics of resistance to herbivory and intricate genetic phenomenon with their impact on crop evolution are addressed and at times hypothesized for future validation.</p>\",\"PeriodicalId\":73471,\"journal\":{\"name\":\"International journal of plant genomics\",\"volume\":\"2013 \",\"pages\":\"572784\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of plant genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/572784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of plant genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/572784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/3/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Transformation of wild species into elite cultivars through "domestication" entails evolutionary responses in which plant populations adapt to selection. Domestication is a process characterized by the occurrence of key mutations in morphological, phenological, or utility genes, which leads to the increased adaptation and use of the plant; however, this process followed by modern plant breeding practices has presumably narrowed the genetic diversity in crop plants. The reduction of genetic diversity could result in "broad susceptibility" to newly emerging herbivores and pathogens, thereby threatening long-term crop retention. Different QTLs influencing herbivore resistance have also been identified, which overlap with other genes of small effect regulating resistance indicating the presence of pleiotropism or linkage between such genes. However, this reduction in genetic variability could be remunerated by introgression of novel traits from wild perhaps with antifeedant and antinutritional toxic components. Thus it is strongly believed that transgenic technologies may provide a radical and promising solution to combat herbivory as these avoid linkage drag and also the antifeedant angle. Here, important questions related to the temporal dynamics of resistance to herbivory and intricate genetic phenomenon with their impact on crop evolution are addressed and at times hypothesized for future validation.