时间图模型分解的稀疏化方法。

Ning Ruan, Ruoming Jin, Victor E Lee, Kun Huang
{"title":"时间图模型分解的稀疏化方法。","authors":"Ning Ruan,&nbsp;Ruoming Jin,&nbsp;Victor E Lee,&nbsp;Kun Huang","doi":"10.1109/ICDM.2009.67","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal causal modeling can be used to recover the causal structure among a group of relevant time series variables. Several methods have been developed to explicitly construct temporal causal graphical models. However, how to best understand and conceptualize these complicated causal relationships is still an open problem. In this paper, we propose a decomposition approach to simplify the temporal graphical model. Our method clusters time series variables into groups such that strong interactions appear among the variables within each group and weak (or no) interactions exist for cross-group variable pairs. Specifically, we formulate the clustering problem for temporal graphical models as a regression-coefficient sparsification problem and define an interesting objective function which balances the model prediction power and its cluster structure. We introduce an iterative optimization approach utilizing the Quasi-Newton method and generalized ridge regression to minimize the objective function and to produce a clustered temporal graphical model. We also present a novel optimization procedure utilizing a graph theoretical tool based on the maximum weight independent set problem to speed up the Quasi-Newton method for a large number of variables. Finally, our detailed experimental study on both synthetic and real datasets demonstrates the effectiveness of our methods.</p>","PeriodicalId":74565,"journal":{"name":"Proceedings. IEEE International Conference on Data Mining","volume":"2009 ","pages":"447-456"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDM.2009.67","citationCount":"3","resultStr":"{\"title\":\"A Sparsification Approach for Temporal Graphical Model Decomposition.\",\"authors\":\"Ning Ruan,&nbsp;Ruoming Jin,&nbsp;Victor E Lee,&nbsp;Kun Huang\",\"doi\":\"10.1109/ICDM.2009.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temporal causal modeling can be used to recover the causal structure among a group of relevant time series variables. Several methods have been developed to explicitly construct temporal causal graphical models. However, how to best understand and conceptualize these complicated causal relationships is still an open problem. In this paper, we propose a decomposition approach to simplify the temporal graphical model. Our method clusters time series variables into groups such that strong interactions appear among the variables within each group and weak (or no) interactions exist for cross-group variable pairs. Specifically, we formulate the clustering problem for temporal graphical models as a regression-coefficient sparsification problem and define an interesting objective function which balances the model prediction power and its cluster structure. We introduce an iterative optimization approach utilizing the Quasi-Newton method and generalized ridge regression to minimize the objective function and to produce a clustered temporal graphical model. We also present a novel optimization procedure utilizing a graph theoretical tool based on the maximum weight independent set problem to speed up the Quasi-Newton method for a large number of variables. Finally, our detailed experimental study on both synthetic and real datasets demonstrates the effectiveness of our methods.</p>\",\"PeriodicalId\":74565,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Data Mining\",\"volume\":\"2009 \",\"pages\":\"447-456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICDM.2009.67\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2009.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

时间因果建模可以用来恢复一组相关时间序列变量之间的因果结构。已经开发了几种方法来明确地构建时间因果图模型。然而,如何最好地理解和概念化这些复杂的因果关系仍然是一个悬而未决的问题。在本文中,我们提出了一种分解方法来简化时间图形模型。我们的方法将时间序列变量聚类成组,使得每组内的变量之间出现强相互作用,而跨组变量对存在弱(或没有)相互作用。具体来说,我们将时间图模型的聚类问题表述为回归系数稀疏化问题,并定义了一个有趣的目标函数来平衡模型的预测能力和聚类结构。我们引入了一种迭代优化方法,利用准牛顿方法和广义脊回归来最小化目标函数并产生聚类时间图形模型。我们还提出了一种新的优化方法,利用图论工具基于最大权无关集问题来加快拟牛顿方法对大量变量的求解速度。最后,我们在合成数据集和真实数据集上进行了详细的实验研究,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sparsification Approach for Temporal Graphical Model Decomposition.

Temporal causal modeling can be used to recover the causal structure among a group of relevant time series variables. Several methods have been developed to explicitly construct temporal causal graphical models. However, how to best understand and conceptualize these complicated causal relationships is still an open problem. In this paper, we propose a decomposition approach to simplify the temporal graphical model. Our method clusters time series variables into groups such that strong interactions appear among the variables within each group and weak (or no) interactions exist for cross-group variable pairs. Specifically, we formulate the clustering problem for temporal graphical models as a regression-coefficient sparsification problem and define an interesting objective function which balances the model prediction power and its cluster structure. We introduce an iterative optimization approach utilizing the Quasi-Newton method and generalized ridge regression to minimize the objective function and to produce a clustered temporal graphical model. We also present a novel optimization procedure utilizing a graph theoretical tool based on the maximum weight independent set problem to speed up the Quasi-Newton method for a large number of variables. Finally, our detailed experimental study on both synthetic and real datasets demonstrates the effectiveness of our methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression. Heterogeneous Treatment Effect Estimation with Subpopulation Identification for Personalized Medicine in Opioid Use Disorder. RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging. Robust Unsupervised Domain Adaptation from A Corrupted Source. Communication Efficient Tensor Factorization for Decentralized Healthcare Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1