用于消除放射性核素的先进多孔吸附剂

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY EnergyChem Pub Date : 2023-07-01 DOI:10.1016/j.enchem.2023.100101
Mengjie Hao , Yanfang Liu , Weijin Wu , Shiyu Wang , Xinyi Yang , Zhongshan Chen , Zhenwu Tang , Qifei Huang , Suhua Wang , Hui Yang , Xiangke Wang
{"title":"用于消除放射性核素的先进多孔吸附剂","authors":"Mengjie Hao ,&nbsp;Yanfang Liu ,&nbsp;Weijin Wu ,&nbsp;Shiyu Wang ,&nbsp;Xinyi Yang ,&nbsp;Zhongshan Chen ,&nbsp;Zhenwu Tang ,&nbsp;Qifei Huang ,&nbsp;Suhua Wang ,&nbsp;Hui Yang ,&nbsp;Xiangke Wang","doi":"10.1016/j.enchem.2023.100101","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of nuclear industry, effective management of nuclear waste and oversight of nuclear fuel cycle are critical. Radionuclides such as uranium (U), plutonium (Pu), neptunium (Np), americium (Am), curium (Cm), technetium (Tc), rhenium (Re), iodine (I), selenium (Se), thorium (Th), cesium (Cs), and strontium (Sr) transferred into environment are dangerous. It is crucial to design the corresponding materials to exhibit high adsorption capacity and selectivity among competing species in nuclear waste. Herein, this review comprehensively summarizes the application of advanced porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and amorphous porous organic polymers (POPs) as porous adsorbents for radionuclides removal. These porous materials feature uniform composition, large porosity, and good stability, which lay a good foundation for various applications. The tunable pore sizes, high specific surface areas, exchangeable sites, and functional groups are designed as accessible platforms for nuclides diffusion and adsorption. Specific binding mechanisms toward various radionuclides, such as complexation, electrostatic interaction, and ion exchange are presented. Beyond traditional adsorbents, the superior capacity, kinetics, selectivity, and reusability of COFs, MOFs, and POPs make them broad application prospects in radionuclides removal, providing a way for effective applications in environmental remediation.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 4","pages":"Article 100101"},"PeriodicalIF":22.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Advanced porous adsorbents for radionuclides elimination\",\"authors\":\"Mengjie Hao ,&nbsp;Yanfang Liu ,&nbsp;Weijin Wu ,&nbsp;Shiyu Wang ,&nbsp;Xinyi Yang ,&nbsp;Zhongshan Chen ,&nbsp;Zhenwu Tang ,&nbsp;Qifei Huang ,&nbsp;Suhua Wang ,&nbsp;Hui Yang ,&nbsp;Xiangke Wang\",\"doi\":\"10.1016/j.enchem.2023.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of nuclear industry, effective management of nuclear waste and oversight of nuclear fuel cycle are critical. Radionuclides such as uranium (U), plutonium (Pu), neptunium (Np), americium (Am), curium (Cm), technetium (Tc), rhenium (Re), iodine (I), selenium (Se), thorium (Th), cesium (Cs), and strontium (Sr) transferred into environment are dangerous. It is crucial to design the corresponding materials to exhibit high adsorption capacity and selectivity among competing species in nuclear waste. Herein, this review comprehensively summarizes the application of advanced porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and amorphous porous organic polymers (POPs) as porous adsorbents for radionuclides removal. These porous materials feature uniform composition, large porosity, and good stability, which lay a good foundation for various applications. The tunable pore sizes, high specific surface areas, exchangeable sites, and functional groups are designed as accessible platforms for nuclides diffusion and adsorption. Specific binding mechanisms toward various radionuclides, such as complexation, electrostatic interaction, and ion exchange are presented. Beyond traditional adsorbents, the superior capacity, kinetics, selectivity, and reusability of COFs, MOFs, and POPs make them broad application prospects in radionuclides removal, providing a way for effective applications in environmental remediation.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"5 4\",\"pages\":\"Article 100101\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778023000040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778023000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 53

摘要

随着核工业的快速发展,有效的核废料管理和对核燃料循环的监督至关重要。铀(U)、钚(Pu)、镎(Np)、镅(Am)、锔(Cm)、锝(Tc)、铼(Re)、碘(I)、硒(Se)、钍(Th)、铯(Cs)和锶(Sr)等放射性核素转移到环境中是危险的。设计相应的材料,使其在核废料的竞争物种中具有较高的吸附能力和选择性是至关重要的。本文综述了金属有机骨架(MOFs)、共价有机骨架(COFs)和无定形多孔有机聚合物(pop)等先进多孔材料在放射性核素去除中的应用。这些多孔材料成分均匀,孔隙率大,稳定性好,为各种应用奠定了良好的基础。可调孔径,高比表面积,交换位点和官能团被设计为核素扩散和吸附的可访问平台。介绍了与各种放射性核素的特殊结合机制,如络合、静电相互作用和离子交换。在传统吸附剂的基础上,COFs、mof和POPs具有优良的吸附能力、动力学、选择性和可重复使用性,在放射性核素去除方面具有广阔的应用前景,为其在环境修复中的有效应用提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced porous adsorbents for radionuclides elimination

With the rapid development of nuclear industry, effective management of nuclear waste and oversight of nuclear fuel cycle are critical. Radionuclides such as uranium (U), plutonium (Pu), neptunium (Np), americium (Am), curium (Cm), technetium (Tc), rhenium (Re), iodine (I), selenium (Se), thorium (Th), cesium (Cs), and strontium (Sr) transferred into environment are dangerous. It is crucial to design the corresponding materials to exhibit high adsorption capacity and selectivity among competing species in nuclear waste. Herein, this review comprehensively summarizes the application of advanced porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and amorphous porous organic polymers (POPs) as porous adsorbents for radionuclides removal. These porous materials feature uniform composition, large porosity, and good stability, which lay a good foundation for various applications. The tunable pore sizes, high specific surface areas, exchangeable sites, and functional groups are designed as accessible platforms for nuclides diffusion and adsorption. Specific binding mechanisms toward various radionuclides, such as complexation, electrostatic interaction, and ion exchange are presented. Beyond traditional adsorbents, the superior capacity, kinetics, selectivity, and reusability of COFs, MOFs, and POPs make them broad application prospects in radionuclides removal, providing a way for effective applications in environmental remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
期刊最新文献
Hierarchically ordered meso-/macroporous MOF-based materials for catalysis and energy applications Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts Progresses and insights of thermoelectrochemical devices for low-grade heat harvesting: From mechanisms, materials to devices Hole transport materials for scalable p-i-n perovskite solar modules Highly asymmetrically configured single atoms anchored on flame-roasting deposited carbon black as cathode catalysts for ultrahigh power density Zn-air batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1