{"title":"精神分裂症的自身免疫模型","authors":"D D Adams, J G Knight, A Ebringer","doi":"10.5402/2012/758072","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is of mysterious causation. It is not infectious, not congenital, but shows familial aggregation, the Mendelian genetics indicating involvement of multiple codominant genes with incomplete penetrance. This is the pattern for autoimmune diseases, such as Graves' disease of the thyroid, where forbidden clones of B lymphocytes develop, and cause thyrotoxicosis by secreting autoantibodies that react with the thyroid gland's receptor for thyroid-stimulating hormone from the pituitary gland. In 1982, Knight postulated that autoantibodies affecting the function of neurons in the limbic region of the brain are a possible cause of schizophrenia. Today, this is even more probable, with genes predisposing to schizophrenia having being found to be immune response genes, one in the MHC and two for antibody light chain V genes. Immune response genes govern the immune repertoire, dictating the genetic risk of autoimmune diseases. The simplest test for an autoimmune basis of schizophrenia would be trial of immunosuppression with prednisone in acute cases. The urgent research need is to find the microbial trigger, as done by Ebringer for rheumatoid arthritis and for ankylosing spondylitis. This could lead to prophylaxis of schizophrenia by vaccination against the triggering microbe.</p>","PeriodicalId":14749,"journal":{"name":"ISRN Psychiatry","volume":"2012 ","pages":"758072"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5402/2012/758072","citationCount":"4","resultStr":"{\"title\":\"The autoimmune model of schizophrenia.\",\"authors\":\"D D Adams, J G Knight, A Ebringer\",\"doi\":\"10.5402/2012/758072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia is of mysterious causation. It is not infectious, not congenital, but shows familial aggregation, the Mendelian genetics indicating involvement of multiple codominant genes with incomplete penetrance. This is the pattern for autoimmune diseases, such as Graves' disease of the thyroid, where forbidden clones of B lymphocytes develop, and cause thyrotoxicosis by secreting autoantibodies that react with the thyroid gland's receptor for thyroid-stimulating hormone from the pituitary gland. In 1982, Knight postulated that autoantibodies affecting the function of neurons in the limbic region of the brain are a possible cause of schizophrenia. Today, this is even more probable, with genes predisposing to schizophrenia having being found to be immune response genes, one in the MHC and two for antibody light chain V genes. Immune response genes govern the immune repertoire, dictating the genetic risk of autoimmune diseases. The simplest test for an autoimmune basis of schizophrenia would be trial of immunosuppression with prednisone in acute cases. The urgent research need is to find the microbial trigger, as done by Ebringer for rheumatoid arthritis and for ankylosing spondylitis. This could lead to prophylaxis of schizophrenia by vaccination against the triggering microbe.</p>\",\"PeriodicalId\":14749,\"journal\":{\"name\":\"ISRN Psychiatry\",\"volume\":\"2012 \",\"pages\":\"758072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5402/2012/758072\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2012/758072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2012/758072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
Schizophrenia is of mysterious causation. It is not infectious, not congenital, but shows familial aggregation, the Mendelian genetics indicating involvement of multiple codominant genes with incomplete penetrance. This is the pattern for autoimmune diseases, such as Graves' disease of the thyroid, where forbidden clones of B lymphocytes develop, and cause thyrotoxicosis by secreting autoantibodies that react with the thyroid gland's receptor for thyroid-stimulating hormone from the pituitary gland. In 1982, Knight postulated that autoantibodies affecting the function of neurons in the limbic region of the brain are a possible cause of schizophrenia. Today, this is even more probable, with genes predisposing to schizophrenia having being found to be immune response genes, one in the MHC and two for antibody light chain V genes. Immune response genes govern the immune repertoire, dictating the genetic risk of autoimmune diseases. The simplest test for an autoimmune basis of schizophrenia would be trial of immunosuppression with prednisone in acute cases. The urgent research need is to find the microbial trigger, as done by Ebringer for rheumatoid arthritis and for ankylosing spondylitis. This could lead to prophylaxis of schizophrenia by vaccination against the triggering microbe.