{"title":"血管生成模拟:神经胶质瘤治疗的新靶点。","authors":"Yin-Sheng Chen, Zhong-Ping Chen","doi":"10.5732/cjc.012.10292","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-angiogenic therapy has shown promising but insufficient efficacy on gliomas. Recent studies suggest that vasculogenic mimicry (VM), or the formation of non-endothelial, tumor-cell-lined microvascular channels, occurs in aggressive tumors, including gliomas. There is also evidence of a physiological connection between the endothelial-lined vasculature and VM channels. Tumor cells, by virtue of their high plasticity, can form vessel-like structures themselves, which may function as blood supply networks. Our previous study on gliomas showed that microvessel density was comparably less in VM-positive tumors than in VM-negative tumors. Thus, VM may act as a complement to ensure tumor blood supply, especially in regions with less microvessel density. Patients with VM-positive gliomas survived a shorter period of time than did patients with VM-negative gliomas. Although the detailed molecular mechanisms for VM are not fully understood, glioma stem cells might play a key role, since they are involved in tumor tissue remodeling and contribute to neovascularization via transdifferentiation. In the future, successful treatment of gliomas should involve targeting both VM and angiogenesis. In this review, we summarize the progress and challenges of VM in gliomas. </p>","PeriodicalId":10034,"journal":{"name":"癌症","volume":"33 2","pages":"74-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5732/cjc.012.10292","citationCount":"64","resultStr":"{\"title\":\"Vasculogenic mimicry: a novel target for glioma therapy.\",\"authors\":\"Yin-Sheng Chen, Zhong-Ping Chen\",\"doi\":\"10.5732/cjc.012.10292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anti-angiogenic therapy has shown promising but insufficient efficacy on gliomas. Recent studies suggest that vasculogenic mimicry (VM), or the formation of non-endothelial, tumor-cell-lined microvascular channels, occurs in aggressive tumors, including gliomas. There is also evidence of a physiological connection between the endothelial-lined vasculature and VM channels. Tumor cells, by virtue of their high plasticity, can form vessel-like structures themselves, which may function as blood supply networks. Our previous study on gliomas showed that microvessel density was comparably less in VM-positive tumors than in VM-negative tumors. Thus, VM may act as a complement to ensure tumor blood supply, especially in regions with less microvessel density. Patients with VM-positive gliomas survived a shorter period of time than did patients with VM-negative gliomas. Although the detailed molecular mechanisms for VM are not fully understood, glioma stem cells might play a key role, since they are involved in tumor tissue remodeling and contribute to neovascularization via transdifferentiation. In the future, successful treatment of gliomas should involve targeting both VM and angiogenesis. In this review, we summarize the progress and challenges of VM in gliomas. </p>\",\"PeriodicalId\":10034,\"journal\":{\"name\":\"癌症\",\"volume\":\"33 2\",\"pages\":\"74-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5732/cjc.012.10292\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"癌症\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5732/cjc.012.10292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5732/cjc.012.10292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/2 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Vasculogenic mimicry: a novel target for glioma therapy.
Anti-angiogenic therapy has shown promising but insufficient efficacy on gliomas. Recent studies suggest that vasculogenic mimicry (VM), or the formation of non-endothelial, tumor-cell-lined microvascular channels, occurs in aggressive tumors, including gliomas. There is also evidence of a physiological connection between the endothelial-lined vasculature and VM channels. Tumor cells, by virtue of their high plasticity, can form vessel-like structures themselves, which may function as blood supply networks. Our previous study on gliomas showed that microvessel density was comparably less in VM-positive tumors than in VM-negative tumors. Thus, VM may act as a complement to ensure tumor blood supply, especially in regions with less microvessel density. Patients with VM-positive gliomas survived a shorter period of time than did patients with VM-negative gliomas. Although the detailed molecular mechanisms for VM are not fully understood, glioma stem cells might play a key role, since they are involved in tumor tissue remodeling and contribute to neovascularization via transdifferentiation. In the future, successful treatment of gliomas should involve targeting both VM and angiogenesis. In this review, we summarize the progress and challenges of VM in gliomas.
期刊介绍:
In July 2008, Landes Bioscience and Sun Yat-sen University Cancer Center began co-publishing the international, English-language version of AI ZHENG or the Chinese Journal of Cancer (CJC). CJC publishes original research, reviews, extra views, perspectives, supplements, and spotlights in all areas of cancer research. The primary criteria for publication in CJC are originality, outstanding scientific merit, and general interest. The Editorial Board is composed of members from around the world, who will strive to maintain the highest standards for excellence in order to generate a valuable resource for an international readership.