{"title":"力学双域模型:综述。","authors":"Bradley J Roth","doi":"10.1155/2013/863689","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical bidomain model is a new mathematical description of the elastic behavior of cardiac tissue. Its primary advantage over previous models is that it accounts for forces acting across the cell membrane arising form differences in the displacement of the intracellular and extracellular spaces. In this review, I describe the development of the mechanical bidomain model. I emphasize new predictions of the model, such as the existence of boundary layers at the tissue surface where the membrane forces are large, and pressure differences between the intracellular and extracellular spaces. Although the theoretical analysis is quite mathematical, I highlight the types of experiments that could be used to test the model predictions. Finally, I present open questions about the mechanical bidomain model that may be productive future directions for research.</p>","PeriodicalId":89790,"journal":{"name":"ISRN tissue engineering","volume":"2013 ","pages":"863689"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/863689","citationCount":"11","resultStr":"{\"title\":\"The Mechanical Bidomain Model: A Review.\",\"authors\":\"Bradley J Roth\",\"doi\":\"10.1155/2013/863689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanical bidomain model is a new mathematical description of the elastic behavior of cardiac tissue. Its primary advantage over previous models is that it accounts for forces acting across the cell membrane arising form differences in the displacement of the intracellular and extracellular spaces. In this review, I describe the development of the mechanical bidomain model. I emphasize new predictions of the model, such as the existence of boundary layers at the tissue surface where the membrane forces are large, and pressure differences between the intracellular and extracellular spaces. Although the theoretical analysis is quite mathematical, I highlight the types of experiments that could be used to test the model predictions. Finally, I present open questions about the mechanical bidomain model that may be productive future directions for research.</p>\",\"PeriodicalId\":89790,\"journal\":{\"name\":\"ISRN tissue engineering\",\"volume\":\"2013 \",\"pages\":\"863689\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/863689\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN tissue engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/863689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/863689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mechanical bidomain model is a new mathematical description of the elastic behavior of cardiac tissue. Its primary advantage over previous models is that it accounts for forces acting across the cell membrane arising form differences in the displacement of the intracellular and extracellular spaces. In this review, I describe the development of the mechanical bidomain model. I emphasize new predictions of the model, such as the existence of boundary layers at the tissue surface where the membrane forces are large, and pressure differences between the intracellular and extracellular spaces. Although the theoretical analysis is quite mathematical, I highlight the types of experiments that could be used to test the model predictions. Finally, I present open questions about the mechanical bidomain model that may be productive future directions for research.