Fabrizio Anniballi, Bruna Auricchio, Cédric Woudstra, Patrick Fach, Alfonsina Fiore, Hanna Skarin, Luca Bano, Bo Segerman, Rickard Knutsson, Dario De Medici
{"title":"多重实时PCR检测和分型肉毒梭菌III群及其花叶变异。","authors":"Fabrizio Anniballi, Bruna Auricchio, Cédric Woudstra, Patrick Fach, Alfonsina Fiore, Hanna Skarin, Luca Bano, Bo Segerman, Rickard Knutsson, Dario De Medici","doi":"10.1089/bsp.2012.0084","DOIUrl":null,"url":null,"abstract":"<p><p>Botulism is a neuroparalytic disease that can occur in all warm-blooded animals, birds, and fishes. The disease in animals is mainly caused by toxins produced by Clostridium botulinum strains belonging to group III, although outbreaks due to toxins produced by group I and II organisms have been recognized. Group III strains are capable of producing botulinum toxins of type C, D, and C/D and D/C mosaic variants. Definitive diagnosis of animal botulism is made by combining clinical findings with laboratory investigations. Detection of toxins in clinical specimens and feed is the gold standard for laboratory diagnosis. Since toxins may be degraded by organisms contained in the gastrointestinal tract or may be present at levels below the detection limit, the recovery of C. botulinum from sick animal specimens is consistent for laboratory confirmation. In this article we report the development and in-house validation of a new multiplex real-time PCR for detecting and typing the neurotoxin genes found in C. botulinum group III organisms. Validation procedures have been carried out according to ISO 16140, using strains and samples recovered from cases of animal botulism in Italy and France. </p>","PeriodicalId":87059,"journal":{"name":"Biosecurity and bioterrorism : biodefense strategy, practice, and science","volume":"11 Suppl 1 ","pages":"S207-14"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/bsp.2012.0084","citationCount":"18","resultStr":"{\"title\":\"Multiplex real-time PCR for detecting and typing Clostridium botulinum group III organisms and their mosaic variants.\",\"authors\":\"Fabrizio Anniballi, Bruna Auricchio, Cédric Woudstra, Patrick Fach, Alfonsina Fiore, Hanna Skarin, Luca Bano, Bo Segerman, Rickard Knutsson, Dario De Medici\",\"doi\":\"10.1089/bsp.2012.0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botulism is a neuroparalytic disease that can occur in all warm-blooded animals, birds, and fishes. The disease in animals is mainly caused by toxins produced by Clostridium botulinum strains belonging to group III, although outbreaks due to toxins produced by group I and II organisms have been recognized. Group III strains are capable of producing botulinum toxins of type C, D, and C/D and D/C mosaic variants. Definitive diagnosis of animal botulism is made by combining clinical findings with laboratory investigations. Detection of toxins in clinical specimens and feed is the gold standard for laboratory diagnosis. Since toxins may be degraded by organisms contained in the gastrointestinal tract or may be present at levels below the detection limit, the recovery of C. botulinum from sick animal specimens is consistent for laboratory confirmation. In this article we report the development and in-house validation of a new multiplex real-time PCR for detecting and typing the neurotoxin genes found in C. botulinum group III organisms. Validation procedures have been carried out according to ISO 16140, using strains and samples recovered from cases of animal botulism in Italy and France. </p>\",\"PeriodicalId\":87059,\"journal\":{\"name\":\"Biosecurity and bioterrorism : biodefense strategy, practice, and science\",\"volume\":\"11 Suppl 1 \",\"pages\":\"S207-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/bsp.2012.0084\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosecurity and bioterrorism : biodefense strategy, practice, and science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/bsp.2012.0084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosecurity and bioterrorism : biodefense strategy, practice, and science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/bsp.2012.0084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiplex real-time PCR for detecting and typing Clostridium botulinum group III organisms and their mosaic variants.
Botulism is a neuroparalytic disease that can occur in all warm-blooded animals, birds, and fishes. The disease in animals is mainly caused by toxins produced by Clostridium botulinum strains belonging to group III, although outbreaks due to toxins produced by group I and II organisms have been recognized. Group III strains are capable of producing botulinum toxins of type C, D, and C/D and D/C mosaic variants. Definitive diagnosis of animal botulism is made by combining clinical findings with laboratory investigations. Detection of toxins in clinical specimens and feed is the gold standard for laboratory diagnosis. Since toxins may be degraded by organisms contained in the gastrointestinal tract or may be present at levels below the detection limit, the recovery of C. botulinum from sick animal specimens is consistent for laboratory confirmation. In this article we report the development and in-house validation of a new multiplex real-time PCR for detecting and typing the neurotoxin genes found in C. botulinum group III organisms. Validation procedures have been carried out according to ISO 16140, using strains and samples recovered from cases of animal botulism in Italy and France.