Courtney M Wheatley, Wayne J Morgan, Nicholas A Cassuto, William T Foxx-Lupo, Cori L Daines, Mary A Morgan, Hanna Phan, Eric M Snyder
{"title":"在囊性纤维化患者中,呼气冷凝水检测氯化物基线减少和沙丁胺醇反应增加。","authors":"Courtney M Wheatley, Wayne J Morgan, Nicholas A Cassuto, William T Foxx-Lupo, Cori L Daines, Mary A Morgan, Hanna Phan, Eric M Snyder","doi":"10.4137/CCRPM.S12882","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF) lung disease. A potential application of exhaled breath condensate (EBC) collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl(-), DLCO and SpO2 were lower in CF (n = 16) compared to healthy participants (n = 16). EBC Cl(-) increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl(-) in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation. </p>","PeriodicalId":44269,"journal":{"name":"Clinical Medicine Insights-Circulatory Respiratory and Pulmonary Medicine","volume":"7 ","pages":"79-90"},"PeriodicalIF":1.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CCRPM.S12882","citationCount":"5","resultStr":"{\"title\":\"Exhaled breath condensate detects baseline reductions in chloride and increases in response to albuterol in cystic fibrosis patients.\",\"authors\":\"Courtney M Wheatley, Wayne J Morgan, Nicholas A Cassuto, William T Foxx-Lupo, Cori L Daines, Mary A Morgan, Hanna Phan, Eric M Snyder\",\"doi\":\"10.4137/CCRPM.S12882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF) lung disease. A potential application of exhaled breath condensate (EBC) collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl(-), DLCO and SpO2 were lower in CF (n = 16) compared to healthy participants (n = 16). EBC Cl(-) increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl(-) in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation. </p>\",\"PeriodicalId\":44269,\"journal\":{\"name\":\"Clinical Medicine Insights-Circulatory Respiratory and Pulmonary Medicine\",\"volume\":\"7 \",\"pages\":\"79-90\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/CCRPM.S12882\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Medicine Insights-Circulatory Respiratory and Pulmonary Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/CCRPM.S12882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Medicine Insights-Circulatory Respiratory and Pulmonary Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/CCRPM.S12882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Exhaled breath condensate detects baseline reductions in chloride and increases in response to albuterol in cystic fibrosis patients.
Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF) lung disease. A potential application of exhaled breath condensate (EBC) collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl(-), DLCO and SpO2 were lower in CF (n = 16) compared to healthy participants (n = 16). EBC Cl(-) increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl(-) in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation.