环境化学物质对秀丽隐杆线虫神经元退化和线粒体抑制的影响。

International journal of biochemistry and molecular biology Pub Date : 2013-12-15 eCollection Date: 2013-01-01
Shaoyu Zhou, Zemin Wang, James E Klaunig
{"title":"环境化学物质对秀丽隐杆线虫神经元退化和线粒体抑制的影响。","authors":"Shaoyu Zhou,&nbsp;Zemin Wang,&nbsp;James E Klaunig","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial alterations have been documented for many years in the brains of Parkinson's disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson's disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson's disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson's disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn(2+) and Pb(2+)) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson's disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson's disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson's disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn(2+) at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model. </p>","PeriodicalId":13891,"journal":{"name":"International journal of biochemistry and molecular biology","volume":"4 4","pages":"191-200"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867705/pdf/ijbmb0004-0191.pdf","citationCount":"0","resultStr":"{\"title\":\"Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals.\",\"authors\":\"Shaoyu Zhou,&nbsp;Zemin Wang,&nbsp;James E Klaunig\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial alterations have been documented for many years in the brains of Parkinson's disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson's disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson's disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson's disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn(2+) and Pb(2+)) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson's disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson's disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson's disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn(2+) at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model. </p>\",\"PeriodicalId\":13891,\"journal\":{\"name\":\"International journal of biochemistry and molecular biology\",\"volume\":\"4 4\",\"pages\":\"191-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867705/pdf/ijbmb0004-0191.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biochemistry and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种以多巴胺神经元选择性丧失为特征的疾病,多年来,人们一直在记录帕金森病患者大脑中的线粒体改变。最近的研究表明,帕金森病相关蛋白要么存在于线粒体中,要么在应激反应中易位到线粒体中,这进一步加强了线粒体功能在帕金森病发病机制中的重要性。暴露于杀虫剂和重金属等环境化学物质被认为是帕金森病发展的危险因素。据报道,包括烟草烟雾和全氟化合物、农药以及金属(锰(2+)和铅(2+))在内的一些环境因素可调节线粒体功能。然而,在帕金森病的发展和进展的背景下,线粒体改变的确切机制尚未确定。哺乳动物系统的复杂性使得解剖参与帕金森氏病发病机制的分子成分变得困难。本研究采用秀丽隐杆线虫(C. elegans)神经元退化模型,研究了环境化学物质对线粒体生物发生和线粒体基因调控的影响。长期暴露于低浓度(2或4 μM)的农药鱼藤酮,会导致秀丽隐杆线虫多巴胺神经元的显著丧失,这是帕金森病的典型特征。然后我们确定鱼藤酮诱导的神经元变性是否伴随着线粒体生物发生的变化。线粒体基因组复制的定量PCR分析显示,与对照组相比,鱼藤酮处理的秀丽隐杆线虫线粒体DNA (mtDNA)拷贝显著减少。这种线粒体生物发生的减少发生在多巴胺神经元丧失的发育之前,并且是持续的。在另一种神经元毒性物质Mn(2+)浓度为50或100 mM的线虫中也发现了mtDNA复制的抑制作用。我们进一步检测了线粒体基因表达,发现鱼藤酮暴露的线虫线粒体复合体IV亚基COI和COII水平显著降低。这些结果表明,环境化学物质导致线粒体生物发生和线粒体基因表达持续抑制,并提示线粒体生物发生在有毒物质诱导的秀丽隐杆线虫模型神经元变性中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals.

Mitochondrial alterations have been documented for many years in the brains of Parkinson's disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson's disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson's disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson's disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn(2+) and Pb(2+)) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson's disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson's disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson's disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn(2+) at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of phytochemical, proximate, antioxidant, and anti-nutrient properties of Corchorus olitorius, Solanum macrocarpon and Amaranthus cruentus in Ghana. Aleppo galls alleviate paracetamol-induced hepatotoxicity and tissue damage: an experimental study. Bacterial spectrum and antimicrobial resistance pattern in cancer patients with febrile neutropenia. Comparison of BTP, NGAL, KIM-1, & ADMA biomarkers in CKD and non-CKD subjects. Melatonin ameliorates high glucose-induced autophagy in Schwann cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1