Sara H Mokhtar, Maha M Bakhuraysah, David S Cram, Steven Petratos
{"title":"阿尔茨海默病的β -淀粉样蛋白:通过改变神经元细胞骨架导致通讯中断。","authors":"Sara H Mokhtar, Maha M Bakhuraysah, David S Cram, Steven Petratos","doi":"10.1155/2013/910502","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β -amyloid protein (A β ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating A β -rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of A β -mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to A β -dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain. </p>","PeriodicalId":13802,"journal":{"name":"International Journal of Alzheimer's Disease","volume":"2013 ","pages":"910502"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/910502","citationCount":"55","resultStr":"{\"title\":\"The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton.\",\"authors\":\"Sara H Mokhtar, Maha M Bakhuraysah, David S Cram, Steven Petratos\",\"doi\":\"10.1155/2013/910502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β -amyloid protein (A β ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating A β -rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of A β -mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to A β -dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain. </p>\",\"PeriodicalId\":13802,\"journal\":{\"name\":\"International Journal of Alzheimer's Disease\",\"volume\":\"2013 \",\"pages\":\"910502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/910502\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/910502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Alzheimer's Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/910502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton.
Alzheimer's disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β -amyloid protein (A β ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating A β -rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of A β -mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to A β -dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain.