低温保护剂处理的硬珊瑚卵母细胞线粒体DNA的降解。

Mitochondrial Dna Pub Date : 2015-06-01 Epub Date: 2014-01-27 DOI:10.3109/19401736.2013.855734
Sujune Tsai, Jiann-Chu Chen, Emma Spikings, Jan-Jung Li, Chiahsin Lin
{"title":"低温保护剂处理的硬珊瑚卵母细胞线粒体DNA的降解。","authors":"Sujune Tsai,&nbsp;Jiann-Chu Chen,&nbsp;Emma Spikings,&nbsp;Jan-Jung Li,&nbsp;Chiahsin Lin","doi":"10.3109/19401736.2013.855734","DOIUrl":null,"url":null,"abstract":"<p><p>A critical step for successful cryopreservation is to determine the optimal cryoprotectant treatment that can provide protective effects against cryoinjury during freezing and with minimal toxicity. Most cryoprotectants have chemical and osmotic effects when used at high concentrations. Cryoprotectants can damage coral mitochondrial distributions and membrane potentials, which results in reduced ATP production. As mitochondrial DNA (mtDNA) encodes for components of the electron transport chain (ETC) and plays a critical role in ATP synthesis capacity, we determined the effects of cryoprotectants on mtDNA in hard coral (Echinopora spp.) oocytes using quantitative real-time PCR. Our results showed that an insult from a cryoprotectant may be compensated for by the genetic defense mechanisms of these cells. Methanol was found to have the least effect on coral oocytes with regard to their energy status. A single oocyte without cryoprotectant treatment produced an average of 4,220,645 ± 169,990 mtDNA copies, which was greater than that in mammals. However, relatively lower mtDNA copy numbers (<2,000,000) were observed when oocytes were treated with dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), or glycerol at a concentration of 3 M for 20 min. These results provide direct evidence that hard coral (Echinopora spp.) oocytes are extremely susceptible to cryoprotectants and support the concerns with regard to the adverse effects of cryoprotectants. </p>","PeriodicalId":49805,"journal":{"name":"Mitochondrial Dna","volume":"26 3","pages":"420-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/19401736.2013.855734","citationCount":"11","resultStr":"{\"title\":\"Degradation of mitochondrial DNA in cryoprotectant-treated hard coral (Echinopora spp.) oocytes.\",\"authors\":\"Sujune Tsai,&nbsp;Jiann-Chu Chen,&nbsp;Emma Spikings,&nbsp;Jan-Jung Li,&nbsp;Chiahsin Lin\",\"doi\":\"10.3109/19401736.2013.855734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A critical step for successful cryopreservation is to determine the optimal cryoprotectant treatment that can provide protective effects against cryoinjury during freezing and with minimal toxicity. Most cryoprotectants have chemical and osmotic effects when used at high concentrations. Cryoprotectants can damage coral mitochondrial distributions and membrane potentials, which results in reduced ATP production. As mitochondrial DNA (mtDNA) encodes for components of the electron transport chain (ETC) and plays a critical role in ATP synthesis capacity, we determined the effects of cryoprotectants on mtDNA in hard coral (Echinopora spp.) oocytes using quantitative real-time PCR. Our results showed that an insult from a cryoprotectant may be compensated for by the genetic defense mechanisms of these cells. Methanol was found to have the least effect on coral oocytes with regard to their energy status. A single oocyte without cryoprotectant treatment produced an average of 4,220,645 ± 169,990 mtDNA copies, which was greater than that in mammals. However, relatively lower mtDNA copy numbers (<2,000,000) were observed when oocytes were treated with dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), or glycerol at a concentration of 3 M for 20 min. These results provide direct evidence that hard coral (Echinopora spp.) oocytes are extremely susceptible to cryoprotectants and support the concerns with regard to the adverse effects of cryoprotectants. </p>\",\"PeriodicalId\":49805,\"journal\":{\"name\":\"Mitochondrial Dna\",\"volume\":\"26 3\",\"pages\":\"420-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/19401736.2013.855734\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/19401736.2013.855734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/19401736.2013.855734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

成功冷冻保存的关键步骤是确定最佳的冷冻保护剂处理方法,该方法可以在冷冻过程中提供对冷冻损伤的保护作用,并且毒性最小。大多数冷冻保护剂在高浓度使用时具有化学和渗透作用。低温保护剂可以破坏珊瑚的线粒体分布和膜电位,从而导致ATP的产生减少。由于线粒体DNA (mtDNA)编码电子传递链(ETC)的组成部分,并在ATP合成能力中起着关键作用,我们使用实时荧光定量PCR技术测定了冷冻保护剂对硬珊瑚卵母细胞mtDNA的影响。我们的研究结果表明,来自冷冻保护剂的伤害可能由这些细胞的遗传防御机制来补偿。甲醇被发现对珊瑚卵母细胞的能量状态影响最小。未经冷冻保护剂处理的单个卵母细胞平均产生4,220,645±169,990个mtDNA拷贝,高于哺乳动物。然而,相对较低的mtDNA拷贝数(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Degradation of mitochondrial DNA in cryoprotectant-treated hard coral (Echinopora spp.) oocytes.

A critical step for successful cryopreservation is to determine the optimal cryoprotectant treatment that can provide protective effects against cryoinjury during freezing and with minimal toxicity. Most cryoprotectants have chemical and osmotic effects when used at high concentrations. Cryoprotectants can damage coral mitochondrial distributions and membrane potentials, which results in reduced ATP production. As mitochondrial DNA (mtDNA) encodes for components of the electron transport chain (ETC) and plays a critical role in ATP synthesis capacity, we determined the effects of cryoprotectants on mtDNA in hard coral (Echinopora spp.) oocytes using quantitative real-time PCR. Our results showed that an insult from a cryoprotectant may be compensated for by the genetic defense mechanisms of these cells. Methanol was found to have the least effect on coral oocytes with regard to their energy status. A single oocyte without cryoprotectant treatment produced an average of 4,220,645 ± 169,990 mtDNA copies, which was greater than that in mammals. However, relatively lower mtDNA copy numbers (<2,000,000) were observed when oocytes were treated with dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), or glycerol at a concentration of 3 M for 20 min. These results provide direct evidence that hard coral (Echinopora spp.) oocytes are extremely susceptible to cryoprotectants and support the concerns with regard to the adverse effects of cryoprotectants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mitochondrial Dna
Mitochondrial Dna 生物-遗传学
自引率
0.00%
发文量
0
审稿时长
2.4 months
期刊介绍: Previously published under the title DNA Sequence (Vols 1-19.3), Mitochondrial DNA accepts original high-quality reports based on mapping, sequencing and analysis of mitochondrial DNA and RNA. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, medical genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The editorial board will also consider manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences.
期刊最新文献
Mitochondrial DNA: Methods and Protocols Genetic variation in the Chinese soft-shell turtles (Pelodiscus spp.) revealed by sequences of mitochondrial Cytb gene Complete chloroplast genome sequence of Castanopsis concinna (Fagaceae), a threatened species from Hong Kong and South-Eastern China. The complete mitochondrial genome of the Shaziling pig. The complete mitochondrial genome of the Ningxiang pig.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1