{"title":"DNA条形码技术修正了对麝的误认。","authors":"Chengzhong Yang, Zhen Xiao, Yuan Zou, Xiuyue Zhang, Bo Yang, Yinghong Hao, Timothy Moermond, Bisong Yue","doi":"10.3109/19401736.2014.880887","DOIUrl":null,"url":null,"abstract":"<p><p>As an endangered animal group in China, musk deer (genus Moschus) have attracted the attention of deer biologists and wildlife conservationists. Clarifying the taxonomic status and distribution of musk deer species is important to determine the conservation status for each species and establish appropriate conservation strategies. There remains some uncertainty about the species determination of the musk deer in the Guandi Forest District of Shanxi Province, China. The musk deer in Shanxi would appear to represent an extension of the geographical distribution of either the Forest Musk Deer from the southwest or the Siberian Musk Deer from the northeast, or possibly both. The musk deer population in Shanxi Province provides an interesting and significant case to test the value of applying molecular methods to make a genetic species identification. In order to clarify the species status of the Shanxi musk deer, we sequenced 627 bp of the COI gene and ≈723 bp of the D-loop gene in 12 musk deer samples collected from the Guandi Forest District, and the two reference samples collected from Sichuan. Genetic analyses from the data suggest that all of the samples from the Guandi Forest District are M. berezovskii rather than M. moschiferus. It is most likely that the most previous studies had wrong species identification. And it is the first time we use DNA barcoding to prove that Shanxi is a new distribution of M. berezovskii. </p>","PeriodicalId":49805,"journal":{"name":"Mitochondrial Dna","volume":"26 4","pages":"605-12"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/19401736.2014.880887","citationCount":"13","resultStr":"{\"title\":\"DNA barcoding revises a misidentification on musk deer.\",\"authors\":\"Chengzhong Yang, Zhen Xiao, Yuan Zou, Xiuyue Zhang, Bo Yang, Yinghong Hao, Timothy Moermond, Bisong Yue\",\"doi\":\"10.3109/19401736.2014.880887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As an endangered animal group in China, musk deer (genus Moschus) have attracted the attention of deer biologists and wildlife conservationists. Clarifying the taxonomic status and distribution of musk deer species is important to determine the conservation status for each species and establish appropriate conservation strategies. There remains some uncertainty about the species determination of the musk deer in the Guandi Forest District of Shanxi Province, China. The musk deer in Shanxi would appear to represent an extension of the geographical distribution of either the Forest Musk Deer from the southwest or the Siberian Musk Deer from the northeast, or possibly both. The musk deer population in Shanxi Province provides an interesting and significant case to test the value of applying molecular methods to make a genetic species identification. In order to clarify the species status of the Shanxi musk deer, we sequenced 627 bp of the COI gene and ≈723 bp of the D-loop gene in 12 musk deer samples collected from the Guandi Forest District, and the two reference samples collected from Sichuan. Genetic analyses from the data suggest that all of the samples from the Guandi Forest District are M. berezovskii rather than M. moschiferus. It is most likely that the most previous studies had wrong species identification. And it is the first time we use DNA barcoding to prove that Shanxi is a new distribution of M. berezovskii. </p>\",\"PeriodicalId\":49805,\"journal\":{\"name\":\"Mitochondrial Dna\",\"volume\":\"26 4\",\"pages\":\"605-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/19401736.2014.880887\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/19401736.2014.880887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/19401736.2014.880887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
DNA barcoding revises a misidentification on musk deer.
As an endangered animal group in China, musk deer (genus Moschus) have attracted the attention of deer biologists and wildlife conservationists. Clarifying the taxonomic status and distribution of musk deer species is important to determine the conservation status for each species and establish appropriate conservation strategies. There remains some uncertainty about the species determination of the musk deer in the Guandi Forest District of Shanxi Province, China. The musk deer in Shanxi would appear to represent an extension of the geographical distribution of either the Forest Musk Deer from the southwest or the Siberian Musk Deer from the northeast, or possibly both. The musk deer population in Shanxi Province provides an interesting and significant case to test the value of applying molecular methods to make a genetic species identification. In order to clarify the species status of the Shanxi musk deer, we sequenced 627 bp of the COI gene and ≈723 bp of the D-loop gene in 12 musk deer samples collected from the Guandi Forest District, and the two reference samples collected from Sichuan. Genetic analyses from the data suggest that all of the samples from the Guandi Forest District are M. berezovskii rather than M. moschiferus. It is most likely that the most previous studies had wrong species identification. And it is the first time we use DNA barcoding to prove that Shanxi is a new distribution of M. berezovskii.
期刊介绍:
Previously published under the title DNA Sequence (Vols 1-19.3), Mitochondrial DNA accepts original high-quality reports based on mapping, sequencing and analysis of mitochondrial DNA and RNA. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, medical genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The editorial board will also consider manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences.