{"title":"基于阳离子纤维素纳米纤维的电动执行器:反阴离子和电解质的影响","authors":"Frédéric Héraly, Bo Pang, Jiayin Yuan","doi":"10.1016/j.snr.2023.100142","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose-based electro-actuators have enormous potential in various applications, <em>e.g.</em> artificial muscles, soft grippers, medical devices, just to name a few, owing to their high mechanical strength, lightness and natural abundance. However, significant challenges remain in the fabrication of such electro-actuators featuring low operating voltage and fast response kinetics. We report here a facile fabrication route towards high-performance electro-actuators composed of CNFs films doped with ionic liquids or lithium salts and sandwiched by two thin film gold electrodes. Large bending motion at voltages as low as 3.0 V could be observed. The size effect of both anions and cations on the actuation was comprehensively investigated. CNF-TFSI@LiTFSI and CNF-BF<sub>4</sub>@EMIM-BF<sub>4</sub> electro-actuators presented the best bending strain under an AC voltage of 3.0 V. This work provides new inspiration in the design of natural polymer-based high-performance electro-actuators.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":6.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cationic cellulose Nanofibrils-based electro-actuators: The effects of counteranion and electrolyte\",\"authors\":\"Frédéric Héraly, Bo Pang, Jiayin Yuan\",\"doi\":\"10.1016/j.snr.2023.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellulose-based electro-actuators have enormous potential in various applications, <em>e.g.</em> artificial muscles, soft grippers, medical devices, just to name a few, owing to their high mechanical strength, lightness and natural abundance. However, significant challenges remain in the fabrication of such electro-actuators featuring low operating voltage and fast response kinetics. We report here a facile fabrication route towards high-performance electro-actuators composed of CNFs films doped with ionic liquids or lithium salts and sandwiched by two thin film gold electrodes. Large bending motion at voltages as low as 3.0 V could be observed. The size effect of both anions and cations on the actuation was comprehensively investigated. CNF-TFSI@LiTFSI and CNF-BF<sub>4</sub>@EMIM-BF<sub>4</sub> electro-actuators presented the best bending strain under an AC voltage of 3.0 V. This work provides new inspiration in the design of natural polymer-based high-performance electro-actuators.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"5 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266605392300005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266605392300005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cationic cellulose Nanofibrils-based electro-actuators: The effects of counteranion and electrolyte
Cellulose-based electro-actuators have enormous potential in various applications, e.g. artificial muscles, soft grippers, medical devices, just to name a few, owing to their high mechanical strength, lightness and natural abundance. However, significant challenges remain in the fabrication of such electro-actuators featuring low operating voltage and fast response kinetics. We report here a facile fabrication route towards high-performance electro-actuators composed of CNFs films doped with ionic liquids or lithium salts and sandwiched by two thin film gold electrodes. Large bending motion at voltages as low as 3.0 V could be observed. The size effect of both anions and cations on the actuation was comprehensively investigated. CNF-TFSI@LiTFSI and CNF-BF4@EMIM-BF4 electro-actuators presented the best bending strain under an AC voltage of 3.0 V. This work provides new inspiration in the design of natural polymer-based high-performance electro-actuators.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.