不依赖氧的烷基自由基纳米发生器增强乳腺癌治疗

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nanomedicine: Nanotechnology, Biology and Medicine Pub Date : 2023-02-01 DOI:10.1016/j.nano.2022.102630
Pilei Si PhD , Wenyan Yu PhD , Chengzhen Li M.M. , Haijun Chen M.M. , Enzhao Zhang M.M. , Jiaojiao Gu M.M. , Ruoyan Wang M.M. , Jinjin Shi PhD
{"title":"不依赖氧的烷基自由基纳米发生器增强乳腺癌治疗","authors":"Pilei Si PhD ,&nbsp;Wenyan Yu PhD ,&nbsp;Chengzhen Li M.M. ,&nbsp;Haijun Chen M.M. ,&nbsp;Enzhao Zhang M.M. ,&nbsp;Jiaojiao Gu M.M. ,&nbsp;Ruoyan Wang M.M. ,&nbsp;Jinjin Shi PhD","doi":"10.1016/j.nano.2022.102630","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>The hypoxic microenvironment<span> of breast cancer substantially reduces oxygen-dependent free radical generation. </span></span>Overexpression of </span>glutathione<span> (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical </span></span>treatment. </span><em>In vivo</em> and <em>in vitro</em> assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"48 ","pages":"Article 102630"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy\",\"authors\":\"Pilei Si PhD ,&nbsp;Wenyan Yu PhD ,&nbsp;Chengzhen Li M.M. ,&nbsp;Haijun Chen M.M. ,&nbsp;Enzhao Zhang M.M. ,&nbsp;Jiaojiao Gu M.M. ,&nbsp;Ruoyan Wang M.M. ,&nbsp;Jinjin Shi PhD\",\"doi\":\"10.1016/j.nano.2022.102630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>The hypoxic microenvironment<span> of breast cancer substantially reduces oxygen-dependent free radical generation. </span></span>Overexpression of </span>glutathione<span> (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical </span></span>treatment. </span><em>In vivo</em> and <em>in vitro</em> assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"48 \",\"pages\":\"Article 102630\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963422001162\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001162","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌的低氧微环境大大减少了氧依赖性自由基的产生。肿瘤细胞中谷胱甘肽(GSH)的过度表达减轻了自由基产生的影响。在这项研究中,我们设计并开发了一种氧不依赖的烷基自由基纳米发生器(单硫化铜/2,2 ' -阿扎比斯(2-咪唑啉)dihydrochloride@bovine血清白蛋白;cu /AIPH@BSA)具有时空控制特性和谷胱甘肽消耗,以加强乳腺癌治疗。我们将烷基自由基引发剂AIPH包封在具有光热转化效应的中空介孔cu纳米颗粒中,并包覆在BSA中。AIPH在近红外激光照射下,利用cu的光热转化效应,在缺氧乳腺癌中释放分解生成烷基自由基。CuS在肿瘤细胞中消耗高GSH水平,因为它可以与GSH形成复合物,从而增强自由基治疗。体内和体外实验表明,合理设计的自由基纳米发生器在乳腺癌缺氧微环境中具有抗肿瘤作用,且无全身毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy

The hypoxic microenvironment of breast cancer substantially reduces oxygen-dependent free radical generation. Overexpression of glutathione (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical treatment. In vivo and in vitro assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction Delivery of gene editing therapeutics Liposomes - Human phagocytes interplay in whole blood: effect of liposome design Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1