Pilei Si PhD , Wenyan Yu PhD , Chengzhen Li M.M. , Haijun Chen M.M. , Enzhao Zhang M.M. , Jiaojiao Gu M.M. , Ruoyan Wang M.M. , Jinjin Shi PhD
{"title":"不依赖氧的烷基自由基纳米发生器增强乳腺癌治疗","authors":"Pilei Si PhD , Wenyan Yu PhD , Chengzhen Li M.M. , Haijun Chen M.M. , Enzhao Zhang M.M. , Jiaojiao Gu M.M. , Ruoyan Wang M.M. , Jinjin Shi PhD","doi":"10.1016/j.nano.2022.102630","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>The hypoxic microenvironment<span> of breast cancer substantially reduces oxygen-dependent free radical generation. </span></span>Overexpression of </span>glutathione<span> (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical </span></span>treatment. </span><em>In vivo</em> and <em>in vitro</em> assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"48 ","pages":"Article 102630"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy\",\"authors\":\"Pilei Si PhD , Wenyan Yu PhD , Chengzhen Li M.M. , Haijun Chen M.M. , Enzhao Zhang M.M. , Jiaojiao Gu M.M. , Ruoyan Wang M.M. , Jinjin Shi PhD\",\"doi\":\"10.1016/j.nano.2022.102630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>The hypoxic microenvironment<span> of breast cancer substantially reduces oxygen-dependent free radical generation. </span></span>Overexpression of </span>glutathione<span> (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical </span></span>treatment. </span><em>In vivo</em> and <em>in vitro</em> assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"48 \",\"pages\":\"Article 102630\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963422001162\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001162","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy
The hypoxic microenvironment of breast cancer substantially reduces oxygen-dependent free radical generation. Overexpression of glutathione (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical treatment. In vivo and in vitro assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.